Table of Contents

Performance Parameters and Limited Warranty						Page
Solenoid Actuated Brakes (SAB)						
Introduction . 3-7						
Selection						
Modifications-Descriptions and Prices . $54-63$						
Close Coupled						
NEMA Frame	Series	Torque (lb-ft)	Nm	Enclosur		
48C	48,100	1.5-6	2-8	IP 23		
56C-145TC	56,X00	1.5-25	2-34	IP 21, 23,	54, 55, 56, 57	.10-15
182TC-256TC/UC	56,600	10-25	14-34	IP 23, 54,		. 16
	87,000	6-105	8-142	IP 23, 54,		.17-20
284TC/UC-286TC/UC	87,100	50-105	68-142	IP 23, 54		. 21
324-405TC/TSC/UC/USC	81,000	125-230	169-312	IP 23, 54		.22-23
	82,000	125-440	169-597	IP 23, 54		.22,24
444-445TC/TSC/UC/USC	86,000	500-1,000	678-1356	IP 23, 54		.25-26
505TC/TSC/UC/USC	86,100	500-1,000	678-1356	IP 23, 54		.25-26
DIVISION 1 HAZARDOUS LOCATION						
Introduction						. 27-28
56C-145TC	65,300	1.5-15	2-20	IP 23, 56	NEMA 7, 9	.29-31
182TC-256TC/UC	87,300	10-105	14-142	IP 23, 55	NEMA 7, 9	.32-37
324-405 TC/TSC/UC/USC	82,300	125-330	169-447	IP 56	NEMA 7, 9	.38-39
Foot Mounted	87,300	10-105	14-142	IP 23	NEMA 7, 9	.36-37
Foot Mounted	82,300	125-330	169-447	IP 23	NEMA 7, 9	. 39
DIVISION 2 HAZARDOUS LOCATION						
56C-145TC	56,800	1.5-25	2-34	IP 55		.40-41
182TC-256TC/UC	87,800	6-105	8-142	IP 55		.42-43
DOUBLE C-FACE COUPLER BRAKES						
56C-145TC	56,700	1.5-25	2-34	IP 23, 54,	55, 56	.44-45
182TC - 256TC/UC	87,700	10-105	14-142	IP 23, 54,		.46-47
FOOT MOUNTED WITH BEARING SUPPORTED THRU-SHAFT						
Foot Mounted	56,700	1.5-25	2-34	IP 23		. 48
Foot Mounted	87,200	10-105	14-142	IP 23, 54		. 49
Special Application Brakes						
MARINE/MARITIME/NAVY APPLIC						. 50
MINING BRAKES - MSHA CERTIF						. 51
ENCODER BRAKES						.52-53
Armature Actuated Brakes (AAB)						
Introduction . 64.64						
Selection . 66						
Series Descri			Torque (lb-in)		Nm	
310 High Torque Holding On	rvo Motor		8-350 lb-in		. $9-39.5$.67-68
311 High Torque Holding On	rvo Motor		75-400 lb-in		8-45	.69-70
320 Commercial Duty-Small	Motors		$3-50 \mathrm{lb-in}$. $34-5.6$.71-72
321/322 Totally-Enclosed Non-Ve	ed (TENV	mmercial Duty	3-72 lb-in		. $34-8.1$.73-76
321 NEMA C Totally-Enclosed Non-Ve	ed (TENV)	Face Mount	$1.5-25 \mathrm{lb}-\mathrm{ft}$		2-34	.77-78
331 \& 333 European Style Metric M			3-300 lb-ft		4-400	.79-81, 84
331 \& 333 European Style-NEMA C	Mount		3-300 lb-ft		4-400	.82-84
350 European Style Portal C	Duty - Pr	P Plate Mount	75-300 lb-ft		102-400	.85-86
360 European Style Portal C	Duty - M	dy Mount	60-300 lb-ft		80-400	.87-88
AAB Rectifiers						.89-92
Electric Brake Release Indicator (Provin	itch)					. 93
AAB Modification - Descriptions and Pri						.94-96
Technical Data						
Motor Frame Adapter Kits . 97						
Foot Mounting Kits . 98						
Dimensions for C-Face AC Motors/Mounting Tolerances . 99 -100						
Set and Release Times . 101						
Conversions . 102						
Formulas . 132						
SINPAC - Electronic Centrifugal Switches . $103-112$						
Super-Mod Clutches and Brakes .113-120						
Application Engineering . 121 .131						
Worldwide Sales and Service . 133						

The performance of Stearns brakes, clutches, clutch-brake combinations, solenoids, and controls depends upon the proper application of the product, adequate run in, installation and maintenance procedures, and reasonable care in operation.

All torque values listed in our bulletins are nominal and are subject to the variations normally associated with friction devices. The purchaser should take into consideration all variables shown in the applicable specification sheets. Although our application engineers are available for consultation, final selection and performance assurance on the purchaser's machine is the responsibility of the purchaser. Careful purchaser selection, adequate testing at time of installation, operation and maintenance of all products of Rexnord Industries, LLC, Stearns Division are required to obtain effective performance.
Stearns warrants to its purchasers that all its products will be free from defects in material and workmanship at the time of shipment to the purchaser for a period of one (1) year from the date of shipment. All warranty claims must be submitted in writing to Stearns within the warranty period, or shall be deemed waived. As to products or parts thereof which Stearns finds to have been defective at the time of shipment, its sole responsibility hereunder shall be to repair, correct or replace (whichever Stearns deems advisable) such defective products or parts without charge, FOB Stearns factory. In the alternative, Stearns may, at its option, either before or after attempting a different remedy, refund the purchase price upon return of the product or parts.

This warranty shall not apply to any product which has been subjected to misuse: misapplication: neglect (including but not limited to improper maintenance and storage); accident: improper installation; modification (including but not limited to use of other than genuine Stearns replacement parts or attachments); adjustment; or repair.
THE FOREGOING IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING THAT OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, AND OF ANY OTHER OBLIGATION OR LIABILITY ON OUR PART OF ANY KIND OR NATURE WHATSOEVER.
No Stearns representative has any authority to waive, alter, vary or add to the terms hereof without prior approval in writing, to our purchaser, signed by an officer of Rexnord Industries, LLC.
Stearns liability for its products, whether for breach of contract, negligence, strict liability in tort, or otherwise, shall be limited to the repair, correction, or replacement of the products or parts thereof, or to the refund of the purchase price of such products or parts. Stearns will not be liable for any other injury, loss, damage or expense, whether direct or consequential, including but not limited to loss of use, income, profit or production, or increased cost of operation, or spoilage of or damage to material, arising in connection with the sale, installation, use of, inability to use, or the repair or replacement of, or late delivery of, Stearns products.
Any cause of action for breach of the foregoing warranty must be brought within one (1) year from the date the alleged breach occurs.

Note on Special (Nuclear) Applications:
"Rexnord Industries, LLC, Stearns Division products are designed for standard industrial and commercial applications. Operating requirements, environments and required tolerances in nuclear and aircraft applications may be beyond the commercial standards of the Stearns Divisions products. Rexnord Industries, LLC, Stearns Division will assume absolutely no responsibility for the use of and/or resale of Rexnord Industries, LLC, Stearns Division products for such applications unless approved in writing in advance by Rexnord Industries, LLC, Stearns Division."

Stearns Brakes Set the Standard for Excellence

Stearns offers the most comprehensive line of solenoid actuated brakes (SAB's) on the market today. We have earned the reputation as the industry's quality leader by working closely with you, our customers, understanding your needs and developing products with design features to handle your most challenging applications. We have installed millions of Stearns brakes worldwide since 1935. Many brakes operating today are 40 years old or more; evidence of our product quality and reliability.

Stearns motor brakes can be mounted directly to an electric motor or foot mounted. The compact design delivers high torque in a small size with fast, positive response and no residual drag when released. Our brakes can be mounted directly onto NEMA C-face motors without special alignment procedures. Many motor manufacturers offer a brake kit which will convert a stock fan-cooled motor into a brakemotor. Stearns Solenoid Actuated Brakes feature unitized construction which makes servicing friction discs easy using only a screwdriver and wrench. The Stearns SAB ensures automatic stopping and holding any time power to the brake is interrupted. And, as with ALL Stearns products, the friction material is nonasbestos.
We can produce a brake which meets your specifications, including metric mounting. Chances are, we've already manufactured similar requirements from a long list of pre-engineered options.

Enclosure Types

Stearns brakes, when properly installed, are provided in a variety of IP enclosure types.
IP 21 - intended for general purpose, indoor applications, as a ventilated enclosure. Protected against dripping water.

IP 23 - intended for indoor applications, as a non-ventilated enclosure. It provides protection against falling, non-corrosive dirt and liquid. Protected against spraying water.
IP 54 - intended for dust protected indoor and outdoor applications. Protected against splashing water.

IP 55 - intended for dust protected indoor and outdoor applications. Protected against water jets.

IP 56 - intended for dust protected indoor and outdoor applications. Protected against heavy seas or powerful jets.
IP 57 - intended for dust protected indoor and outdoor applications. Protected against the effects of immersion.

NOTE: IP 21, 23 \& 54 - formerly referred to by Stearns as NEMA 1, 2 \& 4 respectively.

IP 55, 56 \& 57 - formerly referred to by Stearns as NEMA Type 4X (BISSC Certified with epoxy coating and stainless steel hardware on exterior, or with a stainless steel enclosure).

Self-Adjusting Disc Brakes

Remote inaccessible locations or high cycling applications require a specially designed, lowmaintenance brake that will operate at peak efficiency and provide uniform braking for long periods of time. Stearns exclusive self-adjusting feature helps eliminate the
 major cause of brake maintenance friction lining wear. Self-adjusting brakes are also well suited for applications where rapid cycling requires frequent resetting of solenoid air gap. Automatic adjustment also eliminates the errors that can occur with hand adjustment. They can be easily modified to suit your particular application.
Depending upon the series you select, these brakes can be direct mounted on motors ranging in size from NEMA 182TC through NEMA 505C.

Manually Adjusted Disc Brakes with Automatic Reset

It's an unbeatable combination; the features you want most in spring-set disc brakes. Standard features now include: a unique spring design which allows for universal mounting, an air gap adjustment gauge for visual recognition that the brake needs adjustment, a new patented hub design, and genuine Stearns friction discs which are trademarked and patented. The 56 Series Brakes come in static torque ratings from 1.5 through 25 lb -ft with NEMA C-face mountings 56C, 143TC, 145TC, 182TFC and 184TFC. Ten different housing, endplate, and release configurations, with a wide variety of preengineered modifications, you can select from 120,000 possible combinations! In addition, for holding applications where friction disc wear is not a factor, Stearns 87,000 Series Brakes are available with an optional manual adjust. The 87,000 Series Brakes are available in static torque ratings from $6 \mathrm{lb}-\mathrm{ft}$ through 105 lb -ft, with NEMA C-face moutings, 182TC through 286TC.

Brakes for Hazardous Locations

Although rugged Stearns Brakes are built to withstand rigorous industrial environments, many applications require additional protection from explosive gases or ignitable dusts. Stearns manufactures a
 complete line of disc brakes designed from the hazardous locations defined in the National Electric Code (NEC). Each brake is labeled to show the Class, Group, and maximum operating temperature of the brake enclosure. We offer both motor-mounted and footmounted designs, and all Stearns Hazardous Location Brakes are UL Listed and CUL or CSA certified.
Double C-Face Disc Brake Couplers
Stearns Disc Brake Couplers provide maximum versatility, allowing you to add a brake to a C-face motor with a single shaft extension. Using these reliable products, you can
 couple a C-face motor to a C -face gear reducer.

Washdown Brakes

Stearns Washdown Brakes include the 56,000 and 87,000 Series brake models. These brakes meet BISSC Standards, AAA Dairy Standards, and other food industry washdown requirements. They feature stainless steel hardware, neoprene gasketing, and FDAapproved white epoxy paint or stainless steel enclosure.

Solenoid Actuated Brakes versus Armature Actuated Brakes

Solenoid Actuated Brakes	Armature Actuated Brakes
Simple wear adjustment	Complex wear adjustment
Easy coil exchange for different voltages	Difficult to change out complete magnet assembly
Maintained manual release with automatic reset for brake release during set-up	Non-maintained release (deadman) requires constant external force to operate
Add on options easily assembled to standard unit	Options require complete brake in most units
Rapid set and release times.	Response time is slower due to required magnetic field build-up in magnet-style coil
Connection can be made directly to AC power source	Direct connection to AC power source requires an optional electric control

Marine Applications

Brakes used in marine applications are customized to meet specific standards. These standards are established to provide various levels of corrosion resistance and performance standards under specific conditions.

Maritime and

 Naval Brakes are designed for U.S. Navy and Coast Guard military specifications. These units conform to MIL-B-16392C or 46CFR 110.10-1 and IEEE Standard 45 . Special material components help prevent corrosion due to shipboard environments. SAB's used in marine environments can be custom built to meet the specifications. In addition, all Stearns SAB's are "Type Approval Certified" by the American Bureau of Shipping.
Today, Stearns is focused on being your worldwide, value-added supplier. Our factory-trained field sales force is available to work with you in person to determine your application needs, as well as provide training and support to your engineers and maintenance staff. Our extensive network of more than 900 distributor branches is your assurance of quality service after the sale.
Stearns is a division of Rexnord Industries, LLC, a world leader in power transmission products. We have the resources, experience and dedication to meet your industrial brake, clutch and solid-state electronic centrifugal switch needs.

Trademarked and Patented Friction Discs

Now you can rely on identifying genuine Stearns Friction Discs which assure continuous, reliable performance backed by the Stearns name.
A molded ring in the Stearns friction discs makes it easy to visually identify a Stearns disc. The new splined discs are trademarked and patented by Stearns Division, Rexnord Industries, LLC.

Manually Adjusted Solenoid Actuated Brakes

Stearns manually-adjusted disc brakes are available from .5 to $105 \mathrm{lb}-\mathrm{ft}$ static torque. They feature spring-set, electrically released designs having simple adjustments to compensate for friction lining wear. All have simple 2-wire motor connection.

Series 48,100 Disc Brakes

Mount directly to NEMA 48C motor frames. Static torque ratings are $11 / 2,3$ and $6 \mathrm{lb}-\mathrm{ft}$.

Quality Design Features:

- Spring-set, electrically released
- Single-disc caliper design
- Simple wear adjustment for easy maintenance
- Knock-out plug on housing for through-shaft applications
- Maintained manual release with automatic reset
- Mount in any position without modification

All Series 56,X00 Disc Brakes

Mount directly to NEMA 56C, 143TC, 145TC, 182TC and 184TC motor frames. Static torque ratings from $11 / 2$ to $25 \mathrm{lb}-\mathrm{ft}$.
The 56 Series family is an unbeatable combination: the features you want most in spring-set disc brakes, at a low price. We took a fresh look at the brake itself as well as your needs and designed a comprehensive line of spring-set brakes that set new standards for quality,
reliability and customer convenience. Here's a sampling of the features we've built into the Stearns 56 Series brakes:

- A Stearns-exclusive spring design permits all-position mount for unlimited mounting possibilities.
- Trademarked and patented friction discs
- Patented splined hub that increases friction disc working area, runs quieter, and offers enhanced heat dissipating capability
- ABS Type Approval Certified

The 56 Series come in static torque ratings from 1.5 through 25 lb -ft with NEMA C-face mountings 56C, 143TC, 145TC, 182TFC, and 184TFC. Ten different housing, endplate, and release configurations accommodate IP 23, IP 54, IP 55, IP 56 and IP 57 enclosures. With a wide variety of pre-engineered modifications, you can select from 120,000 possible combinations!

87,000 Series Disc Brakes

An optional manual adjust mechanism can be provided on 87,000 Series Brakes (does not include 87,300 and 87,800 Series Brakes). Mounted directly to NEMA 182TC through 256TC frames. Includes all the other features of the Series 87,000 .

Series 56,000 Design Features

Stearns self-adjusting disc brakes feature an exclusive, automatic adjusting device that eliminates the major cause of brake maintenance adjustment to compensate for friction lining wear. This feature makes Stearns self-adjusting brakes ideal for remote or inaccessible locations, and for applications where rapid cycling requires frequent wear adjustment of manual adjustable brakes.
The self-adjust mechanism is a simple wrap-spring clutch that automatically adjusts the brake's solenoid air gap to compensate for wear of the friction discs. Automatic adjustment occurs every time the brake is operated, eliminating the errors that can occur with hand adjustment. The self-adjust feature means Stearns motor brakes always operate at peak efficiency, providing more uniform braking, longer disc life, less maintenance time and smooth, quiet operation.

There are nine series of Stearns self-adjusting brakes to select from:

- Series 81,000 brakes for direct mounting to NEMA 324TC through 365TC motor frames. Static torque ratings from 125 to $230 \mathrm{lb}-\mathrm{ft}$.
- Series 82,000 brakes for direct mounting to NEMA 324TC through 405TSC motor frames. Static torque ratings from 125 to $440 \mathrm{lb}-\mathrm{ft}$.
- Series 86,X00 brakes for direct mounting to NEMA 444TSC through 505TSC motor frames. Static torque ratings from 500 to $1,000 \mathrm{lb}-\mathrm{ft}$.
- Series 87,X00 brakes for direct
mounting to NEMA 182TC through 286TC motor frames. Static torque ratings from 6 to $105 \mathrm{lb}-\mathrm{ft}$.
- Series 87,200 for floor mounted, double shaft output with bearing support. Static torque ratings from 10 to $105 \mathrm{lb}-\mathrm{ft}$.
- Series 87,300 hazardous location brakes for UL Listed Division I applications, which mount directly to NEMA 182TC through 256TC motor frames. Static torque ratings from 10 to $105 \mathrm{lb}-\mathrm{ft}$.
- Series 82,300 hazardous location brakes for UL listed Division I
applications, for mounting directly to NEMA 324TC through 405TSC.
Static torque ratings 125 to $330 \mathrm{lb}-\mathrm{ft}$.
- Series 87,700 brakes for in-line applications, to couple the motor and gear box. For direct mounting to NEMA 182TC through 256TC motor frames. Torque Rating of 10 to $105 \mathrm{lb}-\mathrm{ft}$.
- Series 87,800 brakes hazardous location brake for UL Listed Division 2 applications, which mount directly to NEMA 182TC through 256TC motor frames. Static torque ratings of 10 to $105 \mathrm{lb}-\mathrm{ft}$.

Lever Arm and Self-Adjusting Mechanism

Quality Design Features

- Spring-set, electrically released.
- Self-adjusting mechanism minimizes maintenance by automatically compensating for lining wear.
- Unitized construction for easy friction disc replacement.
- Maintained manual release with automatic reset.
- Simple 2-wire motor connection.
- Standard or dust-tight, waterproof enclosures available.
- Many modifications for special application requirements.
- Models for marine and maritime applications.
- Models in accordance with Military Specification B16392-C for Navy applications.
- ABS Type Approval Certified.

NOTE: For overhauling/high inertia loads, to stop in a specified time/distance, or for brakes combined with variable frequency drives, please refer to Application Engineering Section.

Stearns Solenoid Actuated Brakes can be easily selected from Table 1 and 2.
Given motor data:

1. Horsepower (hp)
2. Speed (RPM)
3. NEMA C-face frame size

Determine:

1. Static torque rating of the brake (lb-ft)
2. Brake series

Step 1 - Given the motor horsepower and speed, select the brake torque from Table 1. Torque in table 1 is calculated using formula:

$$
\mathrm{T}_{\mathrm{S}}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF}
$$

Where, $\mathrm{T}_{\mathrm{S}}=$ Static torque, $\mathrm{lb}-\mathrm{ft}$

$$
\mathrm{P}=\text { Motor horsepower, hp }
$$

$N=$ Motor full load speed, rpm
SF = Service Factor
5,252 = constant
Example: Given a $5 \mathrm{hp}, 1800$ RPM motor, the selected brake is 20 or $25 \mathrm{lb}-\mathrm{ft}$.

Step 2 - Given the NEMA C-face motor frame size, select the brake series from Table 2.
Example: Given the $5 \mathrm{hp}, 1800$ RPM motor in Step 1 with a NEMA 184TC frame, Series 87,000 ; 87,300 or 87,700 Brakes can be selected to mount directly to the motor.

Table 1 - Torque Selection
In this table, brake torque ratings are no less than 140\% of the motor full load torque.

Motor hp	Brakemotor Shaft Speed (RPM)						
	700	900	1200	1500	1800	3000	3600
	Static Torque Rating of Brake (lb-ft)						
1/6	3	1.5	1.5	1.5	0.75	0.5	0.5
1/4	3	3		1.5	1.5	0.75	0.5
1/3	6	3	3	3	1.5	1.5	0.75
1/2	6	6	3	3	3	1.5	1.5
$3 / 4$	10	6	6	6	6	3	3
1	15	10	6	6	6	3	3
1-1/2	20	15	10	10	10	6	3
2	25	20	15	10	10	6	6
3	35	25	20	15	15	10	6
5	75	50	35	25	20 or 25	15	10
7-1/2	105	75	50	50	35	25	15
10	105	105	75	50	50	25	25
15	175	125	105	75	75	50	35
20	230	175	125	105	105	50	50
25	330	230	175	125	105	75	50
30	330	330	230	175	125	75	75
40	440	330	330	230	175	105	105
50	550	440	330	330	230	*	
60	750	500	440	330	330	*	*
75	1000	750	500	440	330	*	
100	-	1000	750	500	440	*	*
125	-	1000	1000	750	500	*	*
150	-	-	1000	750	750	*	*
200	-	-	-	1000	1000	*	*
250	-	-	-	-	1000	*	*

*See catalog pages for maximum rpm by series. Thermal capacity must be considered in load stops over 1800 rpm.

Table 2 - Brake Series Selection by NEMA Frame Size

Torque Range (lb-ft)	Brake Series	C-Face Motor Frame Size											
		48C	56C	$\begin{aligned} & \text { 143TC } \\ & \text { 145TC } \end{aligned}$	$\begin{aligned} & \text { 182TC } \\ & \text { 184TC } \end{aligned}$	$\begin{aligned} & 213 \mathrm{TC} \\ & 215 \mathrm{TC} \end{aligned}$	$\begin{aligned} & \text { 254TC } \\ & \text { 254UC } \\ & \text { 256TC } \\ & \text { 256UC } \end{aligned}$	$\begin{aligned} & \text { 284TC } \\ & \text { 284UC } \\ & \text { 286TC } \\ & \text { 286UC } \end{aligned}$	$\begin{aligned} & 324 \mathrm{TC} \\ & 324 \mathrm{C} \\ & 326 \mathrm{C} \\ & 326 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 364TC } \\ & \text { 364UC } \\ & \text { 365TC } \\ & \text { 365UC } \end{aligned}$	404TC 404UC 405TC 405UC	444TC 444UC 445TC 445UC	$\begin{gathered} \text { 504UC } \\ \text { 504SC } \\ 505 \mathrm{C} \\ 505 \mathrm{SC} \end{gathered}$
Manually-Adjusted Brakes (require periodic adjustment to compensate for friction disc wear)													
$\begin{aligned} & 1.5-6 \\ & 1.5-25 \\ & 10-25 \end{aligned}$	$\begin{aligned} & 48,100 \\ & 56, \times 00 \\ & 56,500 \end{aligned}$	(1)	(1)	(1)	(2)	(2)	(2)						
Self-Adjusting Brakes (automatically compensate for friction disc wear)													
$6-105$ $50-105$ $125-230$ $125-440$ $500-1000$ $500-1000$	$\begin{aligned} & \hline 87, X 00 \\ & 87,100 \\ & 81,000 \\ & 82,000 \\ & 86,000 \\ & 86,100 \end{aligned}$		(3)	(3)	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & (2) \\ & (1) \\ & (2) \\ & (2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \\ & (1) \\ & (1) \\ & (2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & \text { (1) } \\ & \hline(2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \\ & \text { (1) } \\ & 2 \end{aligned}$	$\begin{aligned} & (2) \\ & (2) \\ & (1) \end{aligned}$	(1)
Division I Hazardous Location Brakes (for atmospheres containing explosive gases or ignitable dusts) / Motor Mounted													
$\begin{gathered} 1.5-15 \\ 10-105 \\ 125-330 \end{gathered}$	$\begin{aligned} & \hline 65,300 \\ & 87,300 \\ & 82,300 \end{aligned}$		(1)	(1)	$\begin{aligned} & (2) \\ & (1) \\ & (2) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & (1) \\ & (2) \end{aligned}$	$\begin{aligned} & (2) \\ & (1) \\ & (2) \end{aligned}$	(2)	(2)	(2)	$\begin{aligned} & (2) \\ & (1) \end{aligned}$	(2)	
Division I Hazardous Location Brakes (for atmospheres containing explosive gases or ignitable dusts) / Foot Mounted													
$\begin{gathered} 10-105 \\ 125-330 \end{gathered}$	$\begin{aligned} & 87,300 \\ & 82,300 \end{aligned}$				(4)	(4)	(4)		(4)	(4)	(4)		
Division 2 Hazardous Location Brakes													
$\begin{aligned} & 1.5-25 \\ & 6-105 \end{aligned}$	$\begin{aligned} & \hline 56,800 \\ & 87,800 \end{aligned}$		$\begin{aligned} & \text { (1) } \\ & (3) \end{aligned}$	$\begin{aligned} & (1) \\ & (3) \end{aligned}$	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
Double C-Face Brake Couplers (for direct coupling a C-face motor to a C-face gear reducer)													
$\begin{aligned} & 1.5-25 \\ & 10-105 \end{aligned}$	$\begin{aligned} & \hline 56,700 \\ & 87,700 \end{aligned}$		(1)	(1)	(1)	(1)	(1)						

(1) Brake mounts directly to motor C-face.
(2) Adapter required to mount brake to motor C-face. Refer to brake specifications for adapter information.
(3) Brake endplate modified for direct mounting to motor C-face without an adapter.
(4) Brake is foot mounted for coupling to a hazardous-location motor.

3.0" AK, 3.75" AJ

Static Torque: 1.5 through $6 \mathrm{lb}-\mathrm{ft}$
Enclosure: IP23 (formerly referred to by Stearns as NEMA 2), Stamped Steel Housing
Release Type: Side Lever
Installation and Service Instructions: P/N 8-078-924-06

Parts List: P/N 8-078-914-02

- Adjustable Torque
 - Manual Wear Adjustment
 - Side Manual Release Lever with Automatic Reset

- Class B Coil Insulation
- Spring-Set Electrically Released
- Lead Wire Length: 24 inches
- Maximum Speed: Horizontal 5000 rpm
- Certified: CSA File LR-6254.

Specifications

Nominal Static Torque	Number of Friction Discs	Coil Size		Maximum Solenoid Cycle Rate 1		Thermal Capacity (2)	Inertia (WK ${ }^{\text {2 }}$)
lb-ft (Nm)		AC	DC	cyc	min	hp-sec/min	$1 \mathrm{~b}-\mathrm{ft}^{2}$
				AC	DC	(watts)	$\left(\mathrm{kgm}^{2} \times 10^{-4}\right)$
$\begin{aligned} & 1.5 \\ & \text { (2) } \end{aligned}$	1	4	4	40	20	$\begin{gathered} 4 \\ (50) \end{gathered}$	$\begin{gathered} .003 \\ (1.26) \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ (4) \end{gathered}$	1	K4	4	36	20	$\begin{gathered} 4 \\ (50) \end{gathered}$	$\begin{gathered} .003 \\ (1.26) \end{gathered}$
$\begin{gathered} 6 \\ \text { (8) } \\ \hline \end{gathered}$	1	M4	K4	36	20	$\begin{gathered} 4 \\ (50) \\ \hline \end{gathered}$	$\begin{gathered} .003 \\ (1.26) \\ \hline \end{gathered}$

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to Selection Procedure Section.

Unit Data/Pricing

Model Number*	Nominal Static Torque (lb-ft) (Nm)	List Price **	Weight lbs (kg)	
1-048-151-00-XX	$\begin{aligned} & 1.5 \\ & \text { (2) } \\ & \hline \end{aligned}$	\$420.00	$\begin{gathered} \hline 4.6 \\ (2.1) \\ \hline \end{gathered}$	A3
1-048-151-01-XX	$\begin{aligned} & 1.5 \\ & \text { (2) } \end{aligned}$	380.00	$\begin{gathered} 4.6 \\ (2.1) \\ \hline \end{gathered}$	A3
1-048-161-00-XX	$\begin{gathered} 3 \\ (4) \\ \hline \end{gathered}$	435.00	$\begin{gathered} 4.6 \\ (2.1) \end{gathered}$	A3
1-048-161-01-XX	$\begin{gathered} 3 \\ \text { (4) } \\ \hline \end{gathered}$	395.00	$\begin{gathered} 4.6 \\ (2.1) \\ \hline \end{gathered}$	A3
1-048-171-00-XX	$\begin{aligned} & 6 \\ & \text { (8) } \end{aligned}$	450.00	$\begin{gathered} 5 \\ \text { (2.3) } \end{gathered}$	A3
1-048-171-01-XX	$\begin{gathered} 6 \\ \hline \\ \text { (8) } \\ \hline \end{gathered}$	410.00	$\begin{gathered} 5 \\ (2.3) \end{gathered}$	A3

*Eighth and Ninth positions designate lead wire position: 00 =internal and external 01 internal only.
**Subtract $\$ 20.00$ for brake ordered less hub

Ordering and Identification

Information

The following example and tables provide information for selecting the appropriate threeletter suffix when ordering a Stearns Brake.

Example of a complete part number:

Enclosure

$-$

$00=$ Internal and
external leadwire position

01= Internal only

Current Ratings (amperes)					
CoilSize	Current	Voltage: 60 Hz			
		$\begin{aligned} & 115 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & 460 \\ & \text { Vac } \end{aligned}$	$\begin{array}{\|l\|l} 575 \\ \text { Vac } \end{array}$
4	Inrush Holding	$\begin{aligned} & 3.6 \\ & .3 \end{aligned}$	$\begin{gathered} 1.8 \\ .2 \end{gathered}$	$\begin{gathered} \hline .9 \\ .08 \end{gathered}$	$\begin{array}{\|c\|} \hline .7 \\ \hline \end{array}$
K4	Inrush Holding	$\begin{gathered} 4.3 \\ .3 \end{gathered}$	$\begin{gathered} \hline 2.2 \\ .2 \end{gathered}$	$\begin{aligned} & 1.1 \\ & .08 \end{aligned}$	$\begin{gathered} .9 \\ .07 \end{gathered}$
M4	Inrush Holding	$\begin{gathered} 3.0 \\ .6 \end{gathered}$	$\begin{aligned} & 1.5 \\ & .3 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \end{aligned}$. 6

Hub	ec		Voltage	tings	
Char-	Bore	Keyway**	Character	Voltage	Hz
acter	(in.)	$\text { (in. } x \text { in.) }$	B	115	60
			D	110	50
A^{*}	5/8	$1 / 8 \times 1 / 16$	E	200	60
B	5/8	$3 / 16 \times 3 / 32$	F	230	60
C^{*}	3/4	3/16 x 3/32	F	190	50
K	1/2	1/8×1/16	H	220	50
K	1/2	$1 / 8 \times 1 / 16$		460	60
Maximum allowable bore 750 . For through-shaft applications .625 is maximum			L	380	50
			M	415	50
			N	575	60
*These bores are non-standard. Add \$225.00 to list price.			O	110/220	50
**Keyseats made to			P	115/208-230	60
ANSI B17.1 Standard.			Q	$\begin{gathered} 208-230 / 460 \\ 190 / 380 \end{gathered}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$
			R	200/400	60

For DC Voltage add $\$ 300.00$. Includes DC electronic switch (polarized).

The $56, \mathrm{X} 00$ Series have the following design features:

- Spring-Set Electrically Released
- Static Torque 1.5 through $25 \mathrm{lb}-\mathrm{ft}$
- Adjustable Torque, down to 50% of rated nameplate torque
- Manual Wear Adjustment
- Airgap Adjust Gage
- Splined Hub

Product Overview

- IP 21, 23 \& 54 (formerly referred to by Stearns as NEMA type $1,2 \& 4$ respectively) IP 55, 56, \& 57 (formerly referred to by Stearns as NEMA Type 4X (BISSC Certified with epoxy coating and stainless steel hardware on exterior or with a stainless steel enclosure)
- Universal mounting through $15 \mathrm{lb}-\mathrm{ft}$. The 20 and $25 \mathrm{lb}-\mathrm{ft}$ are supplied with springs for vertical modification.

Specifications:

- Lead Wire Length: 24 inches
- Maximum Speed:

Horizontal 5000 rpm
Vertical 3600 rpm

- Coil Insulation: Standard Class B

Optional Class H
(56,800 Series Class H standard)

- Certified: CSA File LR-6254
- ABS Type Approval Certified

56000 Series

Designed for industrial applications requiring high performance in a compact lightweight package.
Construction:
Die cast aluminum endplate with stamped steel housing
Available Enclosures:
IP 23, 54 \& 55
Release Type:
External knob manual release with or without automatic reset
Through Shaft Capability: Yes (IP 23 only)

56200 Series

Designed for industrial applications requiring the protection of a heavy duty cast iron enclosure.

Construction:
Cast iron endplate and housing.
Available Enclosures: IP 56 \& 57
Release Type:
External side lever release with automatic reset
Through Shaft Capability: Yes

56500 Series

Same as 56000 Series with 182TC / 184TC mounting.
Construction:
Cast iron endplate with stamped steel housing
(Direct mount to 182TC / 184TC)
Available Enclosures:
IP 23, 54 \& 55
Release Type:
External knob manual release with or without automatic reset

Through Shaft Capability: Yes (IP 23 only)

56900 Series

For use in severe environments found in process industries such as food, pulp and paper mills and chemical plants.
Construction: Stainless steel
Release Type:
Side lever with automatic reset
Available Enclosures: IP 56 \& IP 57
Through Shaft Capability: with IP43 rating only

56700 Series

Units designed for industrial applications that fit between a standard C-Face motor and gear reducer. Can also be used to retrofit installed units without braking capability.
Construction: Die cast aluminum endplate and housing
Available Enclosures:
IP 23, 54, 55 \& 56
Release Type: External knob release with automatic reset
C-face brake has output shaft

Also Available . . .

56100 Series

Full die cast aluminum endplate and housing with internal release lever
Available Enclosures:
IP 23, 56 \& 57

56300 Series

Die cast aluminum endplate with stamped steel housing and external maintained release, IP 21

56400 Series

Cast iron endplate with stamped steel housing and external knob release Available Enclosures: IP 23 \& 54

56600 Series

Cast iron endplate and housing with internal release lever
Available Enclosures: IP 23, 56 \& 57

Series 56,000; 56,100; 56,200; 56,300; 56,400; 56,500; 56,600; 56,700; and 56,900 Mounting Face: NEMA 56C, 143TC and 145TC

Engineering Specifications

Maximum Solenoid Cycle Rate: (1)
AC 36 cycles/min
DC 10 cycles/min

Thermal Capacity: (2)
Horizontal 9 hp-sec/min (112 watts)
Vertical $6.5 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$ (80 watts)
(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50\% duty cycle
Does not relate to brake cycle rate (see Thermal Capacity).
2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Refer to Selection Procedure Section

Series 56,000; 56,100; 56,300;
56,500 ; and 56,700

Nominal Static Torque		Coil Size		Inertia (WK')
$\begin{aligned} & \mathrm{lb}-\mathrm{ft} \\ & (\mathrm{Nm}) \end{aligned}$		AC	DC	$\begin{gathered} \mathrm{Ib}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \end{gathered}$
$\begin{aligned} & 1.5-3 \\ & (2-4) \end{aligned}$	1	4	4+	. 008 (3.36)
6 (8)	1	K4	K4+	. 008 (3.36)
10 (14)	2	K4	K4+	. 014 (5.88)
15 (20)	2	K4+	M4+	. 014 (5.88)
20 (27)	3	K4+	M4+	. 020 (8.40)
25 (34)	3	M4+	P4+	. 020 (8.40)

Current Ratings (amperes)

Solenoid Coil Size*	AC Current	Voltage: 60 Hz						Voltage: 50 Hz			Voltage: DC			
		115	200	230	400	460	575	110	220	380	24	95	115	230
4	Inrush	3.6	2.1	1.8	1.1	. 9	. 7	4.1	2.1	. 9	13.3	3.6	2.8	1.5
	Holding	. 3	. 2	. 2	. 08	. 08	. 06	. 3	. 2	. 08	. 3	. 1	. 05	. 03
4+	Inrush Holding	-	-	-	-	-	-	-	-	-	$\begin{gathered} 12.0 \\ .4 \end{gathered}$	$\begin{gathered} 4.7 \\ .1 \end{gathered}$	$\begin{aligned} & \hline 3.7 \\ & .08 \end{aligned}$	$\begin{aligned} & 2.0 \\ & .04 \end{aligned}$
K4	Inrush	4.3	2.5	2.2	1.3	1.1	. 9	3.8	1.9	1.1	17.5	4.7	3.7	2.0
	Holding	. 3	. 2	. 2	. 1	. 08	. 07	. 4	. 2	. 08	. 4	. 1	. 08	. 04
K4+	Inrush	4.6	2.5	2.3	1.2	1.0	. 9	4.9	2.0	1.0	20.5	7.5	5.5	2.0
	Holding	. 4	. 2	. 2	. 1	. 1	. 08	. 4	. 2	. 1	. 5	. 1	. 08	. 04
M4	Inrush	3.0	1.7	1.5	. 9	. 8	. 6	-	-	. 8	-			
	Holding	. 6	. 3	. 3	. 2	. 1	. 21	-	-	. 1	-	-	-	-
M4+	Inrush	4.6	2.5	2.3	1.2	1.0	. 9	4.1	2.0	1.3	30.3	7.9	5.5	2.0
	Holding	. 4	. 2	. 2	. 1	. 1	. 08	. 4	. 2	. 1	. 5	. 1	. 1	. 04
P4+	Inrush										30.3	11.3	8.4	3.0
	Holding	-	-	-	-	-	-	-	-	-	. 5	. 1	. 08	. 04

Motor Frame Adapters: Series 56,000 through 56,600
WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the "Selection Procedure" section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application requirements, before use of an adapter is considered.

To Adapt to NEMA Frame Size	AK Dim.	Reg. No.	Brake Enclosure (1)	Brake Torque	Adapter Stock Number	Additional Shaft Length Required
	$\begin{gathered} \text { in. } \\ (m m) \end{gathered}$					$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$
$\begin{aligned} & 182 \mathrm{TC} \\ & \text { 184TC } \\ & 213 \mathrm{TC} \\ & 215 \mathrm{TC} \\ & \text { 254TC } \\ & 256 \mathrm{TC} \end{aligned}$	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	IP 23	1.5-15	$\begin{aligned} & \text { 5-55-5041-00 } \\ & \text { List } \$ 700.00 \end{aligned}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	IP 54	1.5-6	$\begin{aligned} & \text { 5-55-5041-00 } \\ & \text { List \$700.00 } \end{aligned}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	IP 23	20 \& 25	$\begin{aligned} & \text { 5-55-5043-00 } \\ & \text { List } \$ 700.00 \end{aligned}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	IP 54	10-25	$\begin{aligned} & \text { 5-55-5043-00 } \\ & \text { List \$700.00 } \end{aligned}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$

(1) 56,300 Series have NEMA 1 enclosure. For adapter dimensions, see Technical Data

Series 56,200; 56,400;
56,600; and 56,900

Nominal Static Torque	No. of Friction	Coil Size		Inertia $\left(\mathbf{W K}^{2}\right)$
Ib-ft (Nm)	discs	AC	DC	$\mathbf{I b - f t ~}^{2}$ $\left(\mathbf{k g m}^{2} \boldsymbol{x} \mathbf{1 0 - 4}\right)$
$3-6(4-8)$	2	4	$4+$	$.014(5.88)$
$10(14)$	2	K 4	$\mathrm{~K} 4+$	$.014(5.88)$
$15(20)$	2	$\mathrm{~K} 4+$	$\mathrm{M} 4+$	$.014(5.88)$
$20(27)$	3	$\mathrm{~K} 4+$	$\mathrm{M} 4+$	$.020(8.40)$
$25(34)$	3	$\mathrm{M} 4+$	$\mathrm{P} 4+$	$.020(8.40)$

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque lb-ft	Coil Size	T1	T2
$1.5-25$	$4, \mathrm{~K} 4, \mathrm{~K} 4+, \mathrm{M} 4+$	25	14

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Example of a complete part number:

1-056-034-00-BFF - Lead wire position	
Series $ل$	(internal and external, left and right) standard
Torque	- 230 Vac
Enclosure	$5 / 8$ bore and
	$3 / 16 \times 3 / 32$ keyway

Hub Selection

Character	Bore (in.)	$\begin{aligned} & \text { Keyway** } \\ & \text { (in. x in.) } \end{aligned}$
A*	5/8	1/8 $\times 1 / 16$
B	5/8	3/16 x 3/32
C	3/4	3/16 x 3/32
D	7/8	3/16 x 3/32
E	1-1/8	$1 / 4 \times 1 / 8$
F^{*}	1-1/4	$1 / 4 \times 1 / 8$
K	1/2	$1 / 8 \times 1 / 16$
L*	1	$1 / 4 \times 1 / 8$
N*	9/16	1/8 $\times 1 / 16$
O*	11/16	3/16 x 3/32
P*	1-1/16	$1 / 4 \times 1 / 8$
R*	13/16	3/16 x 3/32
S*	15/16	$1 / 4 \times 1 / 8$
Z	. 460	pilot bore

Minimum bore is .500. Maximum allowable bore is 1.25 . (maximum shaft length not to exceed end of hub) For through-shaft applications, .875 is maximum
*These bores are non-standard. Add $\$ 225.00$ to list price
**Keyseats made to ANSI B17.1 Standard.

Standard AC
Voltage Ratings

Character	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
	190	50
H	220	50
L	460	60
	380	50
M	415	50
N	575	60
O	$110 / 220$	50
P	$115 / 208-230$	60
Q	$208-230 / 460$	60
R	$190 / 380$	50
	$200 / 400$	60

Direct Current

Char- acter	Voltage
T	12
U	24
V	36
W	48
X	95
Y	115
Z	230

Consult factory if other DC voltage is needed.

Voltages below 70VDC are polarity sensitive.

Modifications are availablesee SAB Modification Section

Dimensional Drawings are on the pages following.

Series 56,000-80 (1-056-0XX-80)

Mounting Face: NEMA 56C, 143TC and 145TC
4.5" AK, 5.88" AJ

Series 56,000 Pricing (Discount Symbol B4)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price**			
		AC	AC List Price**	DC	DC List Price**
1.5 (2)	IP 23	1-056-001-00	\$430.00	1-056-005-00	\$730.00
	IP 54	1-056-002-00	565.00	1-056-006-00	865.00
	IP 55	1-056-004-00	640.00	1-056-008-00	940.00
3 (4)	IP 23	1-056-011-00	450.00	1-056-015-00	750.00
	IP 54	1-056-012-00	585.00	1-056-016-00	885.00
	IP 55	1-056-014-00	660.00	1-056-018-00	960.00
6 (8)	IP 23	1-056-021-00	515.00	1-056-025-00	815.00
	IP 54	1-056-022-00	650.00	1-056-026-00	950.00
	IP 55	1-056-024-00	725.00	1-056-028-00	1,025.00
10 (14)	IP 23	1-056-031-00	615.00	1-056-035-00	915.00
	IP 54	1-056-032-00	755.00	1-056-036-00	1,055.00
	IP 55	1-056-034-00	830.00	1-056-038-00	1,130.00
15 (20)	IP 23	1-056-041-00	715.00	1-056-045-00	1,015.00
	IP 54	1-056-042-00	855.00	1-056-046-00	1,155.00
	IP 55	1-056-044-00	930.00	1-056-048-00	1,230.00
20 (27)	IP 23	1-056-051-00	805.00	1-056-055-00	1,105.00
	IP 54	1-056-052-00	940.00	1-056-056-00	1,240.00
	IP 55	1-056-054-00	1,015.00	1-056-058-00	1,315.00
25 (34)	IP 23	1-056-061-00	900.00	1-056-065-00	1,200.00
	IP 54	1-056-062-00	1,035.00	1-056-066-00	1,335.00
	IP 55	1-056-064-00	1,110.00	1-056-068-00	1,410.00

Series 56,000-80* Pricing (Discount Symbol B4)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price**			
		AC	AC List Price**	DC	DC List Price**
1.5 (2)	IP 54	1-056-002-80*	\$500.00	1-056-006-80*	\$800.00
3 (4)	IP 54	1-056-012-80*	520.00	1-056-016-80*	820.00
6 (8)	IP 54	1-056-022-80*	585.00	1-056-026-80*	885.00
10 (14)	IP 54	1-056-032-80*	690.00	1-056-036-80*	990.00
15 (20)	IP 54	1-056-042-80*	790.00	1-056-046-80*	1,090.00
20 (27)	IP 54	1-056-052-80*	875.00	1-056-056-80*	1,175.00
25 (34)	IP 54	1-056-062-80*	970.00	1-056-066-80*	1,270.00

Dimensions for estimating only.
For installation purposes request certified prints.
Enclosure: Lightweight Steel Housing, Aluminum Endplate
Enclosure Protection: IP 23, 54 \& 55
(formerly referred to by Stearns as NEMA 2, $4 \& 4 X^{*}$ respectively) (*BISSC certified)
Mounting: Fanguard mounted brakes requiring IP 54 or IP 55 protection may require additional sealing measures beyond seals provided with the brake. Refer to Installation \& Service Instruction sheets.
Installation and Service: P/N 8-078-905-60
Parts List: P/N 8-078-906-00
Modifications: Pages 54-63

IP 23 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)					Wt Ibs (Kg)
	A	AG	C Hub Width	G	J	
1.5 (2)	$\begin{gathered} 4.06 \\ (103.1) \end{gathered}$	$\begin{gathered} .52 \\ (13.2) \end{gathered}$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{gathered} 1.23 \\ (31.2) \end{gathered}$	$\begin{gathered} .31 \\ (7.9) \end{gathered}$	8 (3.6)
3 (4)						8 (3.6)
6 (8)						8 (3.6)
10 (14)						8 (3.6)
15 (20)						8 (3.6)
20 (27)	$\begin{gathered} 4.50 \\ (114.3) \end{gathered}$	$\begin{gathered} .52 \\ (13.2) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	$\begin{gathered} .31 \\ (7.9) \end{gathered}$	9 (4.0)
25 (34)						9 (4.0)

IP 54 / 55 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)					Wt lbs (Kg)
	A	AG	C Hub Width	G	J	
1.5 (2)	$\begin{gathered} 4.06 \\ (103.1) \end{gathered}$	$.47$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{gathered} 1.21 \\ (30.7) \end{gathered}$	$\begin{gathered} .37 \\ (9.4) \end{gathered}$	8 (3.6)
3 (4)						8 (3.6)
6 (8)						8 (3.6)
10 (14)	$\begin{gathered} 4.51 \\ (114.6) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	$\begin{gathered} .37 \\ (9.4) \end{gathered}$	9 (4.0)
15 (20)						9 (4.0)
20 (27)						9 (4.0)
25 (34)						9 (4.0)

[^0]
Mounting Face: NEMA 56C, 143TC and 145TC

4.5" AK, 5.88" AJ

Installation and Service:
P/N 8-078-905-60
Modifications: Pages 54-63

56,200 Series: Heavy Duty Cast Iron Enclosure

Dimensions for estimating only. For installation purposes request certified prints.

Parts List: P/N 8-078-906-02

Enclosure:

IP 56 \& 57 (formerly referred to by Stearns as NEMA Type 4X, BISSC Certified)
Mounting: Fanguard-mounted brakes requiring IP 56 or IP 57 protection may require additional sealing measures beyond

56,900 Series: Stainless Steel Enclosure

Parts List: P/N 8-078-906-09

Enclosure Protection:

IP 56 \& 57 (formerly referred to by Stearns as NEMA Type 4X)
Mounting: Fanguard-mounted brakes requiring IP 56 or IP 57 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction Sheets.

Series 56,900 Pricing (Discount Symbol B4)

Nominal Static Torque Ib-ft (Nm)	Enclosure	Basic Model Number and List Price*			
		AC	AC List Price *	DC	DC List Price *
$3(4)$		$1-056-914-00$	$\$ 3,425.00$	$1-056-918-00$	$\$ 3,725.00$
$6(8)$	IP 57	$1-056-924-00$	$3,490.00$	$1-056-928-00$	$3,790.00$
$10(14)$	IP 57	$1-056-934-00$	$3,595.00$	$1-056-938-00$	$3,895.00$
$15(20)$	IP 57	$1-056-944-00$	$3,695.00$	$1-056-948-00$	$3,995.00$
$20(27)$	IP 57	$1-056-954-00$	$3,780.00$	$1-056-958-00$	$4,080.00$
$25(34)$	IP 57	$1-056-964-00$	$3,875.00$	$1-056-968-00$	$4,175.00$

IP 56 / IP 57 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)				Wt lbs (Kg) 56,200	$\begin{gathered} \text { Wt lbs } \\ (\mathrm{Kg}) \\ 56,900 \end{gathered}$
	A	AG	C Hub Width	G		
3 (4)	$\begin{gathered} 4.67 \\ (118.6) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	17 (7.7)	17 (7.7)
6 (8)					17 (7.7)	17 (7.7)
10 (14)					18 (8.0)	17 (7.7)
15 (20)					18 (8.0)	17 (7.7)
20 (27)					21 (9.5)	21 (9.5)
25 (34)					21 (9.5)	21 (9.5)

Series 56,200 Pricing (Discount Symbol B4)

Nominal Static Torque Ib-ft (Nm)	Enclosure	Basic Model Number and List Price*			
		AC List Price*	DC	DC List Price*	
3 (4)	IP 56	$1-056-212-00$	$\$ 1,350.00$	$1-056-216-00$	$\$ 1,650.00$
	IP 57	$1-056-214-00$	$1,425.00$	$1-056-218-00$	$1,725.00$
6 (8)	IP 56	$1-056-222-00$	$1,415.00$	$1-056-226-00$	$1,715.00$
	IP 57	$1-056-224-00$	$1,490.00$	$1-056-228-00$	$1,790.00$
10 (14)	IP 56	$1-056-232-00$	$1,520.00$	$1-056-236-00$	$1,820.00$
	IP 57	$1-056-234-00$	$1,595.00$	$1-056-238-00$	$1,895.00$
15 (20)	IP 56	$1-056-242-00$	$1,620.00$	$1-056-246-00$	$1,920.00$
	IP 57	$1-056-244-00$	$1,695.00$	$1-056-248-00$	$1,995.00$
20 (27)	IP 56	$1-056-252-00$	$1,705.00$	$1-056-256-00$	$2,005.00$
	IP 57	$1-056-254-00$	$1,780.00$	$1-056-258-00$	$2,080.00$
25 (34)	IP 56	$1-056-262-00$	$1,800.00$	$1-056-266-00$	$2,100.00$
	IP 57	$1-056-264-00$	$1,875.00$	$1-056-268-00$	$2,175.00$

[^1]Mounting Face: NEMA 56C, 143TC and 145TC , 4.5" AK, 5.88" AJ

56,300 Series Enclosure: IP 21 (formerly referred to by Stearns as NEMA 1), Stamped steel housing, cast aluminum endplate
Release Type: Lever, maintained
Parts List: P/N 8-078-906-03

Installation and Service:
P/N 8-078-905-60

Series 56,300 Pricing (Discount Symbol B4)

Nominal Static Torque Ib-ft (Nm)	Basic Model Number and List Price*			
	AC	AC List Price *	DC	DC List Price *
$1.5(2)$	$1-056-301-00$	$\$ 445.00$	$1-056-305-00$	$\$ 745.00$
$3(4)$	$1-056-311-00$	465.00	$1-056-315-00$	765.00
6 (8)	$1-056-321-00$	530.00	$1-056-325-00$	830.00
$10(14)$	$1-056-331-00$	630.00	$1-056-335-00$	930.00
$15(20)$	$1-056-341-00$	730.00	$1-056-345-00$	$1,030.00$
$20(27)$	$1-056-351-00$	820.00	$1-056-355-00$	$1,120.00$
$25(34)$	$1-056-361-00$	915.00	$1-056-365-00$	$1,215.00$

IP 21 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)				Wt lbs (Kg)
	A	AG	C Hub Width	G	
1.5 (2)	$\begin{gathered} 4.01 \\ (101.9) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.21 \\ (30.7) \end{array}$	8 (3.6)
3 (4)					8 (3.6)
6 (8)					8 (3.6)
10 (14)					8 (3.6)
15 (20)					8 (3.6)
20 (27)	$\begin{gathered} 4.46 \\ (113.3) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	9 (4.0)
25 (34)					9 (4.0)

*Subtract $\$ 30.00$ for brake ordered less hub.

Series 56,400 (1-056-4XX)

56,400 Series: Stamped steel housing, cast iron endplate. Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA 2 \& 4 respectively)
Release Type: Knob, maintained Mounting: Fanguard-mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets
Parts List: P/N 8-078-906-04
Installation and Service: P/N 8-078-905-60
Series 56,400 Pricing (Discount Symbol B4)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*			
		AC	AC List Price*	DC	DC List Price*
3 (4)	IP 23	1-056-411-00	640.00	1-056-415-00	940.00
	IP 54	1-056-412-00	775.00	1-056-416-00	1,075.00
6 (8)	IP 23	1-056-421-00	705.00	1-056-425-00	1,005.00
	IP 54	1-056-422-00	840.00	1-056-426-00	1,140.00
10 (14)	IP 23	1-056-431-00	805.00	1-056-435-00	1,105.00
	IP 54	1-056-432-00	945.00	1-056-436-00	1,245.00
15 (20)	IP 23	1-056-441-00	905.00	1-056-445-00	1,205.00
	IP 54	1-056-442-00	1,045.00	1-056-446-00	1,345.00
20 (27)	IP 23	1-056-451-00	995.00	1-056-455-00	1,295.00
	IP 54	1-056-452-00	1,130.00	1-056-456-00	1,430.00
25 (34)	IP 23	1-056-461-00	1,090.00	1-056-465-00	1,390.00
	IP 54	1-056-462-00	1,225.00	1-056-466-00	1,525.00

IP 23 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (mm)			Wt lbs (Kg)
	A	C Hub Width	G	
3 (4)	$\begin{array}{\|c\|} \hline 4.46 \\ (113.3) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	11 (5.0)
6 (8)				11 (5.0)
10 (14)				11 (5.0)
15 (20)				12 (5.5)
20 (27)				12 (5.5)
25 (34)				13 (6.0)

IP 54 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (mm)			Wt Ibs (Kg)
	A	C Hub Width	G	
3 (4)	$\begin{gathered} 4.51 \\ (114.6) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	12 (5.5)
6 (8)				12 (5.5)
10 (14)				12 (5.5)
15 (20)				13 (6.0)
20 (27)				13 (6.0)
25 (34)				13 (6.0)

Parts List: P/N 8-078-906-06

Series 56,100 Dimensions

Nominal Static Torque lb-ft (Nm)	Enclosure	Dimensions in Inches (mm)				Wt lbs (Kg)
		A	AG	C Hub Width	G	
1.5-15 (2-20)	IP 23	$\begin{gathered} \hline 4.41 \\ (112.0) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{gathered} 1.21 \\ (30.7) \end{gathered}$	8 (3.6)
20-25 (27-34)		$\begin{array}{\|c\|} \hline 4.86 \\ (123.4) \\ \hline \end{array}$		$\begin{gathered} 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	10 (4.5)
1.5-6 (2-8)	IP 56/57	$\begin{gathered} \hline 4.50 \\ (114.3) \end{gathered}$	$\begin{gathered} .47 \\ (11.9) \end{gathered}$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{gathered} 1.21 \\ (30.7) \end{gathered}$	8 (3.6)
10-25 (14-34)		$\begin{array}{\|c\|} \hline 4.95 \\ (125.7) \end{array}$	$\begin{gathered} .59 \\ (15.0) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 1.66 \\ (42.2) \end{gathered}$	10 (4.5)

Series 56,100 Pricing (Discount Symbol B4)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*			
		AC	AC List Price*	DC	DC List Price*
1.5 (2)	IP 23	1-056-101-00	\$505.00	1-056-105-00	\$805.00
	IP 56	1-056-102-00	640.00	1-056-106-00	940.00
	IP 57	1-056-104-00	715.00	1-056-108-00	1,015.00
3 (4)	IP 23	1-056-111-00	525.00	1-056-115-00	825.00
	IP 56	1-056-112-00	660.00	1-056-116-00	960.00
	IP 57	1-056-114-00	735.00	1-056-118-00	1,035.00
6 (8)	IP 23	1-056-121-00	590.00	1-056-125-00	890.00
	IP 56	1-056-122-00	725.00	1-056-126-00	1,025.00
	IP 57	1-056-124-00	800.00	1-056-128-00	1,100.00
10 (14)	IP 23	1-056-131-00	690.00	1-056-135-00	990.00
	IP 56	1-056-132-00	830.00	1-056-136-00	1,130.00
	IP 57	1-056-134-00	905.00	1-056-138-00	1,205.00
15 (20)	IP 23	1-056-141-00	790.00	1-056-145-00	1,090.00
	IP 56	1-056-142-00	930.00	1-056-146-00	1,230.00
	IP 57	1-056-144-00	1,005.00	1-056-148-00	1,305.00
20 (27)	IP 23	1-056-151-00	880.00	1-056-155-00	1,180.00
	IP 56	1-056-152-00	1,015.00	1-056-156-00	1,315.00
	IP 57	1-056-154-00	1,090.00	1-056-158-00	1,390.00
25 (34)	IP 23	1-056-161-00	975.00	1-056-165-00	1,275.00
	IP 56	1-056-162-00	1,110.00	1-056-166-00	1,410.00
	IP 57	1-056-164-00	1,185.00	1-056-168-00	1,485.00

Series 56,600 Dimensions

Nominal Static Torque Ib-ft $(\mathbf{N m})$	Enclosure	Dimensions in Inches (mm)			Wt lbs (Kg)	
		AG	C Hub Width	G		
$3-25(4-34)$	IP 23	4.95 (125.7)	.59 (15.0)	1.18 (30.0)	1.66 (42.2)	$21(9.5)$
$3-25(4-34)$	IP 56/57	5.05 (128.3)				

Series 56,600 Pricing (Discount Symbol B4)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*			
		AC	AC List Price*	DC	DC List Price*
3 (4)	IP 23	1-056-611-00	1,200.00	1-056-615-00	1,500.00
	IP 56	1-056-612-00	1,335.00	1-056-616-00	1,635.00
	IP 57	1-056-614-00	1,410.00	1-056-618-00	1,710.00
6 (8)	IP 23	1-056-621-00	1,265.00	1-056-625-00	1,565.00
	IP 56	1-056-622-00	1,400.00	1-056-626-00	1,700.00
	IP 57	1-056-624-00	1,475.00	1-056-628-00	1,775.00
10 (14)	IP 23	1-056-631-00	1,365.00	1-056-635-00	1,665.00
	IP 56	1-056-632-00	1,505.00	1-056-636-00	1,805.00
	IP 57	1-056-634-00	1,580.00	1-056-638-00	1,880.00
15 (20)	IP 23	1-056-641-00	1,465.00	1-056-645-00	1,765.00
	IP 56	1-056-642-00	1,605.00	1-056-646-00	1,905.00
	IP 57	1-056-644-00	1,680.00	1-056-648-00	1,980.00
20 (27)	IP 23	1-056-651-00	1,555.00	1-056-655-00	1,855.00
	IP 56	1-056-652-00	1,690.00	1-056-656-00	1,990.00
	IP 57	1-056-654-00	1,765.00	1-056-658-00	2,065.00
25 (34)	IP 23	1-056-661-00	1,650.00	1-056-665-00	1,950.00
	IP 56	1-056-662-00	1,785.00	1-056-666-00	2,085.00
	IP 57	1-056-664-00	1,860.00	1-056-668-00	2,160.00

[^2]Enclosure Material: Stamped Steel Housing, Cast Iron Endplate

Enclosure Protection: IP 23, 54 \& 55 (formerly referred to by Stearns as NEMA 2, 4 \& 4X*) * BISSC Certified
Release Type: Knob, Maintained with Automatic Reset
Mounting: Fanguard-mounted brakes requiring IP 54 or IP 55 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets.
Installation and Service:
P/N 8-078-905-60
Parts List: P/N 8-078-906-05
Modifications: Pages 54-63

IP 23 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)			Wt lbs (Kg)
	A	C Hub Width	J	
10 (14)	$\begin{gathered} 4.46 \\ (113.3) \end{gathered}$	$\begin{gathered} .81 \\ (20.6) \end{gathered}$	$\begin{gathered} .31 \\ (7.9) \end{gathered}$	14 (6.4)
15 (20)				14 (6.4)
20 (27)				14 (6.4)
25 (34)				15 (6.8)

IP 54 / 55 Dimensions

Nominal Static Torque lb-ft (Nm)	Dimensions in Inches (Dimensions in Millimeters)			Wt Ibs (Kg)
	A	C Hub Width	J	
10 (14)	$\begin{gathered} 4.51 \\ (114.6) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} .37 \\ (9.4) \end{gathered}$	14 (6.4)
15 (20)				14 (6.4)
20 (27)				15 (6.8)
25 (34)				15 (6.8)

Unit Pricing (Discount Symbol B4)

Mounting Face: NEMA 182TC - 256TC/UC

The $87, \mathrm{X} 00^{* *}$ Series have the following design features:

- Self-Adjusting Design
- Splined Hub
- Lead Wire Length: 24 inches
- Maximum Speed:

Horizontal 4000 rpm
Vertical 3600 rpm (modification required for vertical mounting), see SAB Modification Section.

- Coil Insulation: Standard Class B Optional

Class H (Class H standard
on 87,800)

- Certified: CSA File LR-6254
- ABS Type Approval Certified
** Does not include 87,300 and 87,700 Series brakes.

Engineering Specifications

Nominal Static Torque	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate (1)	Thermal Capacity (2)	Inertia ($\mathbf{W k}^{\mathbf{2}}$)		
				hp-sec/ min (watts)	$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \end{gathered}$		
(Nm)			Cycles/		87,000	87,100	87,700
$\begin{gathered} \hline 6 \\ (8) \\ \hline \end{gathered}$	1	5	30	$\begin{array}{r} 17.5 \\ (218) \\ \hline \end{array}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$	-	-
$\begin{gathered} \hline 10 \\ (14) \\ \hline \end{gathered}$	1	5	30	$\begin{aligned} & 17.5 \\ & (218) \\ & \hline \end{aligned}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$	-	$\begin{gathered} \hline .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	1	6	25	$\begin{aligned} & 17.5 \\ & (218) \\ & \hline \end{aligned}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$	-	$\begin{gathered} .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 25 \\ (34) \\ \hline \end{gathered}$	1	6	25	$\begin{array}{r} 17.5 \\ (218) \\ \hline \end{array}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$	-	$\begin{gathered} .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 35 \\ (47) \end{gathered}$	1	8	20	$\begin{aligned} & 17.5 \\ & (218) \end{aligned}$	$\begin{gathered} .048 \\ (20.34) \end{gathered}$	-	$\begin{gathered} .078 \\ (32.76) \end{gathered}$
$\begin{gathered} \hline 50 \\ (68) \\ \hline \end{gathered}$	2	6	25	$\begin{array}{r} 17.5 \\ (218) \\ \hline \end{array}$	$\begin{gathered} .089 \\ (37.40) \\ \hline \end{gathered}$	$\begin{gathered} .089 \\ (37.40) \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ (45.36) \\ \hline \end{gathered}$
$\begin{gathered} \hline 75 \\ \text { (102) } \end{gathered}$	2	8	20	$\begin{aligned} & 17.5 \\ & (218) \end{aligned}$	$\begin{gathered} .089 \\ (37.40) \end{gathered}$	$\begin{gathered} .089 \\ (37.40) \end{gathered}$	$\begin{gathered} 108 \\ (45.36) \end{gathered}$
$\begin{gathered} 105 \\ (142) \\ \hline \end{gathered}$	3	8	20	$\begin{aligned} & 17.5 \\ & (218) \\ & \hline \end{aligned}$	$\begin{gathered} .129 \\ (54.45) \\ \hline \end{gathered}$	$\begin{gathered} .129 \\ (54.45) \\ \hline \end{gathered}$	$\begin{gathered} 145 \\ (60.90) \\ \hline \end{gathered}$
$\begin{aligned} & 125 \\ & (169) \end{aligned}$	3	8	20	$\begin{aligned} & 20.0 \\ & (248) \end{aligned}$	-	$\begin{gathered} .129 \\ (54.45) \end{gathered}$	-

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to Selection Procedure Section.
87,800 Thermal capacity is $14 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$ (174 watts).

Current Ratings (amperes)

	$\begin{gathered} \text { AC } \\ \text { Current } \end{gathered}$	Voltage: 60 Hz						Voltage: $\mathbf{5 0 ~ H z}$			Voltage: DC			
		115	200	230	400	460	575	110	220	380	24	95	115	230
5	inrush holding	$\begin{array}{r} 7.5 \\ .5 \end{array}$	$\begin{array}{r} 4.3 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ \hline .2 \end{array}$	$\begin{array}{r} 2.2 \\ .1 \end{array}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{array}{c\|} \hline 1.5 \\ .09 \end{array}$	$\begin{array}{r} \hline 5.4 \\ .3 \end{array}$	$\begin{array}{r} 4.0 \\ .3 \end{array}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{array}{r} 38.0 \\ .5 \end{array}$	$\begin{array}{r} 8.4 \\ .1 \end{array}$	$\begin{gathered} \hline 5.6 \\ .08 \end{gathered}$	$\begin{gathered} \hline 3.2 \\ .04 \end{gathered}$
6	inrush holding	$\begin{array}{r} 13.0 \\ .6 \end{array}$	$\begin{array}{r} 7.5 \\ .4 \end{array}$	$\begin{array}{r} 6.5 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ .2 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	$\begin{array}{r} 2.6 \\ \hline .1 \end{array}$	$\begin{array}{r} 9.4 \\ .5 \end{array}$	$\begin{array}{r} 5.6 \\ .3 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	$\begin{gathered} 42.8 \\ .61 \end{gathered}$	$\begin{array}{r} 11.7 \\ .16 \end{array}$	$\begin{gathered} 8.5 \\ .13 \end{gathered}$	$\begin{gathered} 3.7 \\ .06 \end{gathered}$
8	inrush holding	$\begin{array}{r} 17.6 \\ 1.2 \end{array}$	$\begin{array}{r} 10.3 \\ \hline .7 \end{array}$	$\begin{array}{r} 8.8 \\ .6 \end{array}$	$\begin{array}{r} 5.0 \\ .3 \end{array}$	$\begin{array}{r} 4.2 \\ .3 \end{array}$	$\begin{array}{r} 3.5 \\ .3 \end{array}$	$\begin{array}{r} 15.4 \\ 1.0 \end{array}$	7.7 .5	4.2 .3	$\begin{array}{r} 43.1 \\ .8 \end{array}$	$\begin{array}{r} 11.4 \\ .2 \end{array}$	$\begin{array}{r} 9.3 \\ .2 \end{array}$	4.6 .09

Motor Frame Adapters/Special Endplate

To Adapt to NEMA Frame Size	$\begin{aligned} & \text { in. } \\ & (m m) \end{aligned}$	Reg. No.	Adapter Stock Number	Additional Shaft Length Required in. (mm)
56C, 143TC, or 145TC 182TFC, 184TFC	$\left\|\begin{array}{c} 4.50 \\ (114.30) \end{array}\right\|$	-05	Brake endplate is modified for 4.50 in AK. Adder below*	$(-)$
			$\begin{aligned} & \hline 5-55-7043-00 \\ & \text { List \$1,300.00 } \end{aligned}$	$\begin{gathered} .56 \\ (14.22) \end{gathered}$
284TC 286TC	$\begin{array}{\|c\|} \hline 10.50 \\ (266.70) \\ \hline \end{array}$	-11	$\begin{gathered} \hline 5-55-7055-00 \\ \text { List \$450.00 } \\ \hline \end{gathered}$	$\begin{gathered} .81 \\ (20.64) \\ \hline \end{gathered}$
metric	-	-10	Endplate modified for 130 mm register (AK) \& 165 mm bolt circle (AJ). Add: Brake w/aluminum endplate $\$ 725.00$ includes adder for cast iron endplate. Brake with cast iron endplate: $\$ 340.00$	-
324TC, 326TC, 364TC, 365TC, 404TC or 405TC	$\begin{gathered} 12.50 \\ (317.50) \end{gathered}$	-13	$\begin{gathered} \text { 5-55-7046-00 } \\ \text { List \$875.00 } \end{gathered}$	$\begin{gathered} .88 \\ (22.22) \end{gathered}$
	-	-07	Endplate modified to provide a 6.75 " male register (AK) and 7.19" bolt circle (AJ). Adder below*	
182TC/184TC, 213TC, 215TC, 254TC/256TC	$\begin{gathered} 8.5 \\ (215.90) \end{gathered}$	-03	Extended endplate. Adder below*	$\begin{gathered} .625 \\ (15,88) \end{gathered}$

*Brakes with aluminum endplate: $\$ 725.00$ (includes adder for cast iron endplate)
*Brakes with cast iron endplate: \$340

Ordering and Identification Information					
The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.					
Example of a complete part number:					
$\begin{aligned} & \text { Series - } \\ & \text { Torque- } \\ & \text { losure- } \end{aligned}$			Lead wire position (internal and external, left and right) 230 Vac $5 / 8$ bore and 3/16 x 3/32 keyway		
Hub Selection			Standard AC Voltage Ratings		
$\begin{array}{\|l\|l\|} \text { Char- } \\ \text { acter } \end{array}$	$\begin{gathered} \text { Bore } \\ \text { (in.) } \end{gathered}$	Keyway** (in. x in.)	$\begin{aligned} & \begin{array}{c} \text { char- } \\ \text { acter } \end{array} \end{aligned}$	Volta	Hz
			в	115	60
$\begin{aligned} & \mathrm{A}^{*} \\ & \mathrm{~B}^{*} \\ & \mathrm{C}^{*} \end{aligned}$	5/8	$\begin{aligned} & 1 / 8 \times 1 / 16 \\ & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \\ & \hline \end{aligned}$	D	110	50
	5/8		E	200	60
	$7 / 8$			${ }^{230}$	60 50 50
E E G G H	1-1/8	$\begin{aligned} & 1 / 4 \times 1 / 8 \\ & 1 / 1 \times 1 / 8 \\ & 51 / 1 / 2 \times 52 \\ & 3 / 8 \times 3 / 16 \end{aligned}$	H	190 220	50
	- $\begin{aligned} & 1-3 / 8 \\ & 1-5 / 8 \\ & 1\end{aligned}$		L	460 380	${ }^{60}$
$\begin{aligned} & \mathrm{I}^{\mathrm{J}^{*}} \\ & \mathrm{~K}^{*} \\ & \mathrm{~L}^{*} \\ & \mathrm{M}^{*} \end{aligned}$	1-3/4	$\begin{aligned} & 3 / 8 \times 3 / 166 \\ & 1 / 2 \times 1 / 4 \\ & 1 / 1 / \times 1 / 1 / 6 \\ & 1 / 1 \times 1 / 8 \\ & 3 / 8 \times 3 / 16 \end{aligned}$	m	415	50
	$\substack{1-7 / 8 \\ 1 / 2}$		N	575	60
	-1/12		-	110/220	50
$\begin{aligned} & \mathrm{N}^{*} \\ & \mathrm{P}^{*} \\ & \mathrm{Q}^{*} \end{aligned}$		$\begin{array}{\|c\|} \hline 1 / 8 \times 1 / 16 \\ 3 / 114 \times 3 / 32 \\ 1 / 4 \times 1 / 8 \\ 3 / 8 \times 3 / 16 \end{array}$	P	115/230	60
	${ }^{11 / 16}$		Q	(2301460	60 50
	1-7/16		R	200/400	60
R R^{*} $\mathrm{~S}^{*}$ $\mathrm{~T}^{*}$ U^{*} Z	$13 / 16$ $15 / 16$ $1-3 / 16$ $1-5 / 16$ 600	$\begin{gathered} 3 / 16 \times 3 / 32 \\ 1 / 4 \times 1 / 8 \\ 1 / 1 \times 1 / 8 \\ 5 / 16 \times 5 / 32 \\ \text { pilitot bore } \end{gathered}$			

Maximum allowable bore 1.875 (maximum shaft length
not to exceed end of hub).
For thru-shaft applications 1.625 is maximum.
*These bores are non-standard.
Add $\$ 250.00$ to list price.
**Keyseats made to ANSI B17.1 standard.

Direct Current

Character	Voltage
T	12
U	24
V	36
W	48
X	95
Y	115
Z	230

Consult factory if other DC
voltage is needed.

> Modifications are availablesee SAB Modification Section

Dimensional drawings are on the pages following.

8.5" AK, 7.25" AJ

Static Torque: 6 through $105 \mathrm{lb}-\mathrm{ft}$
Enclosure Material: IP 23 - Sheet Metal Housing, Aluminum Endplate. IP 54 \& 55 - Cast Iron Housing and Endplate. IP 54 \& 55 also available in sheet metal housing, aluminum endplate. IP 56 - Cast iron housing and endplate.
Enclosure Protection: IP 23, 5455 (formerly referred to as NEMA 2, 4 \& 4X* respectively) \& IP 56. *BISSC Certified
Release Type: Pull Release Knob, maintained with automatic reset. Vertical above IP 54 \& 55 supplied with side manual release lever; and all Cast Iron IP 55 brakes supplied with side manual release lever.
Installation, Service and Parts List: P/N 8-078-928-01 Rev. B brakes
Mounting: Horizontal, unless modified for vertical. Vertical mounting is defined as 15° or more from horizontal. Vertical above requires modification. Vertical below requires modification on $50-105 \mathrm{lb}$-ft brakes. Vertical above IP $54 / 55$ includes side manual release. See SAB Modification Section for list price adders.
Fanguard-mounted brakes requiring IP 54 or IP 55 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets.
Specifications including bore sizes/voltages: Page 17
Modifications: Pages 54-63 Including New Manual Adjust Option
Outline Drawing for 1-087-0X2 IP 54 \& 55

Outline Drawing for 1-087-0X1 and 1-087-0X4 Sheet Metal Housing, Aluminum Endplate IP 23, 54 \& 55

Series 87,000 Dimensional Data

IP 23 Enclosure - aluminum \& steel

Nominal Static	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)				$\begin{gathered} \mathrm{Wt.} \\ \mathrm{lbs} \\ (\mathrm{~kg})^{* *} \end{gathered}$	Discount Symbol
$\begin{aligned} & \mathrm{lb}-\mathrm{ft} \\ & (\mathrm{Nm}) \end{aligned}$	AC	AC List Price*	DC	DC List Price*	A	AE	AG	C Hub Width		
$\begin{gathered} \hline 6 \\ \text { (8) } \end{gathered}$	1-087-001-00	\$925.00	1-087-005-00	\$1,495.00	$\begin{gathered} 7.38 \\ (187.32) \end{gathered}$	$\begin{gathered} 1.81 \\ (46.04) \end{gathered}$	$\begin{gathered} .68 \\ (17.29) \end{gathered}$	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$	$\begin{gathered} 20 \\ (9.0) \end{gathered}$	B2
$\begin{gathered} \hline 10 \\ (14) \end{gathered}$	1-087-011-00	925.00	1-087-015-00	1,495.00					$\begin{gathered} \hline 20 \\ (9.0) \end{gathered}$	B2
$\begin{gathered} \hline 15 \\ (20) \end{gathered}$	1-087-021-00	975.00	1-087-025-00	1,545.00					$\begin{gathered} \hline 22 \\ (10.0) \end{gathered}$	B2
$\begin{gathered} \hline 25 \\ (34) \end{gathered}$	1-087-031-00	1,050.00	1-087-035-00	1,620.00					$\begin{gathered} \hline 22 \\ (10.0) \\ \hline \end{gathered}$	B3
$\begin{gathered} 35 \\ (47) \end{gathered}$	1-087-041-00	1,200.00	1-087-045-00	1,770.00					$\begin{gathered} 24 \\ (11.0) \end{gathered}$	B3
$\begin{gathered} 50 \\ (68) \end{gathered}$	1-087-051-00	1,500.00	1-087-055-00	2,070.00	$\begin{gathered} 7.88 \\ (200.02) \end{gathered}$	$\begin{gathered} 2.31 \\ (58.74) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} 22 \\ (10.0) \end{gathered}$	B3
$\begin{gathered} 75 \\ (102) \end{gathered}$	1-087-061-00	2,000.00	1-087-065-00	2,570.00					$\begin{gathered} 27 \\ (12.2) \end{gathered}$	B3
$\begin{gathered} 105 \\ (142) \end{gathered}$	1-087-081-00	2,700.00	1-087-085-00	3,270.00	$\begin{gathered} 8.38 \\ (212.72) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{array}{c\|} \hline .97 \\ (24.64) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 2.00 \\ (50.80) \end{array}$	$\begin{gathered} 33 \\ (15.0) \\ \hline \end{gathered}$	B3

IP 54 and IP 55 Enclosure - CAST IRON

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)				Wt. Ibs $(\mathrm{kg})^{* *}$	Discount Symbol
		AC	AC List Price*	DC	DC List Price*	A	AE	AG	C Hub Width		
$\begin{gathered} 6 \\ (8) \end{gathered}$	$\begin{aligned} & \hline \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-002-00 \\ 1-087-002-B 0 \end{array}$	$\begin{aligned} & \hline \$ 1,525.00 \\ & \$ 1,780.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-006-00 \\ 1-087-006-B 0 \end{array}$	$\begin{aligned} & \hline \$ 2,095.00 \\ & \$ 2,350.00 \end{aligned}$	$\begin{array}{\|c\|} 7.56 \\ (192.09) \end{array}$	$\begin{gathered} 1.81 \\ (46.04) \end{gathered}$	$\begin{gathered} .68 \\ (17.29) \end{gathered}$	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$	$\begin{gathered} 44 \\ (20.0) \end{gathered}$	B2
$\begin{gathered} 10 \\ (14) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-012-00 \\ 1-087-012-\mathrm{B0} \\ \hline \end{array}$	$\begin{aligned} & 1,525.00 \\ & 1,780.00 \end{aligned}$	$\begin{array}{\|l} \hline \text { 1-087-016-00 } \\ \text { 1-087-016-B0 } \end{array}$	$\begin{aligned} & 2,095.00 \\ & 2,350.00 \end{aligned}$					$\begin{gathered} 44 \\ (20.0) \end{gathered}$	B2
$\begin{gathered} 15 \\ (20) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-022-00 \\ 1-087-022-\mathrm{B0} \end{array}$	$\begin{aligned} & 1,575.00 \\ & 1,830.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-026-00 \\ 1-087-026-B 0 \end{array}$	$\begin{aligned} & 2,145.00 \\ & 2,400.00 \end{aligned}$					$\begin{gathered} 46 \\ (21.0) \end{gathered}$	B2
$\begin{gathered} 25 \\ (34) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|c\|} \hline 1-087-032-00 \\ 1-087-032-\mathrm{B0} \end{array}$	$\begin{aligned} & 1,650.00 \\ & 1,905.00 \end{aligned}$	$\begin{array}{\|l} \hline 1-087-036-00 \\ 1-087-036-B 0 \end{array}$	$\begin{aligned} & 2,220.00 \\ & 2,475.00 \end{aligned}$					$\begin{gathered} 46 \\ (21.0) \end{gathered}$	B3
$\begin{gathered} 35 \\ (47) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-042-00 \\ 1-087-042-\mathrm{B0} \end{array}$	$\begin{aligned} & 1,800.00 \\ & 2,055.00 \end{aligned}$	$\begin{aligned} & 1-087-046-00 \\ & 1-087-046-B 0 \end{aligned}$	$\begin{aligned} & 2,370.00 \\ & 2,625.00 \end{aligned}$					$\begin{gathered} 48 \\ (21.7) \end{gathered}$	B3
$\begin{gathered} \hline 50 \\ (68) \end{gathered}$	$\begin{aligned} & \hline \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-052-00 \\ 1-087-052-\mathrm{B0} \\ \hline \end{array}$	$\begin{aligned} & \hline 2,100.00 \\ & 2,355.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-056-00 \\ 1-087-056-\mathrm{B0} \end{array}$	$\begin{aligned} & \hline 2,670.00 \\ & 2,925.00 \end{aligned}$	$\begin{gathered} 8.06 \\ (204.79) \end{gathered}$	$\begin{gathered} 2.31 \\ (58.74) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.50 \\ (38.10) \end{array}$	$\begin{gathered} 51 \\ (23.0) \end{gathered}$	B3
$\begin{gathered} 75 \\ (102) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-062-00 \\ 1-087-062-\mathrm{B0} \end{array}$	$\begin{aligned} & 2,600.00 \\ & 2,855.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-066-00 \\ 1-087-066-B 0 \end{array}$	$\begin{aligned} & 3,170.00 \\ & 3,425.00 \end{aligned}$					$\begin{gathered} 52 \\ (24.0) \end{gathered}$	B3
$\begin{gathered} 105 \\ (142) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-082-00 \\ 1-087-082-\mathrm{B0} \\ \hline \end{array}$	$\begin{aligned} & 3,300.00 \\ & 3,555.00 \end{aligned}$	$\begin{array}{\|l} \hline \text { 1-087-086-00 } \\ \text { 1-087-086-B0 } \end{array}$	$\begin{aligned} & 3,870.00 \\ & 4,125.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 8.56 \\ (217.49) \end{array}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} 56 \\ (25.4) \end{gathered}$	B3
$\begin{aligned} & \hline 125^{1} \\ & (169) \end{aligned}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-092-00 \\ 1-087-092-\mathrm{B0} \end{array}$	$\begin{aligned} & 3,800.00 \\ & 4,055.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-096-00 \\ 1-087-096-\mathrm{B0} \end{array}$	$\begin{aligned} & 4,370.00 \\ & 4,625.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 8.56 \\ (217.49) \end{array}$	$\begin{array}{c\|} \hline 2.81 \\ (71.44) \end{array}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} \hline 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} 56 \\ (25.4) \end{gathered}$	B3

IP 54 and IP 55 Enclosure - Lightweight ALUMINUM \& STEEL

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)				Wt. Ibs $(\mathrm{kg})^{* *}$	Discount Symbol
		AC	AC List Price*	DC	DC List Price*	A	AE	AG	C Hub Width		
$\begin{gathered} \hline 6 \\ (8) \end{gathered}$	$\begin{aligned} & \hline \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-004-00 \\ 1-087-004-B 0 \end{array}$	$\begin{aligned} & \hline \$ 1,125.00 \\ & \$ 1,425.00 \end{aligned}$	Contact factory		$\begin{gathered} 7.43 \\ (188.59) \end{gathered}$	$\begin{gathered} 1.81 \\ (46.04) \end{gathered}$	$\begin{gathered} .68 \\ (17.29) \end{gathered}$	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$	$\begin{gathered} 19 \\ (8.6) \end{gathered}$	B2
$\begin{gathered} 10 \\ (14) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-014-00 \\ 1-087-014-\mathrm{B0} \end{array}$	$\begin{aligned} & 1,125.00 \\ & 1,425.00 \end{aligned}$	Contact factory						$\begin{gathered} \hline 19 \\ (8.6) \end{gathered}$	B2
$\begin{gathered} 15 \\ (20) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-024-00 \\ 1-087-024-B 0 \end{array}$	$\begin{aligned} & 1,175.00 \\ & 1,475.00 \end{aligned}$	Contact factory						$\begin{gathered} 20 \\ (9.0) \end{gathered}$	B2
$\begin{gathered} \hline 25 \\ (34) \end{gathered}$	$\begin{aligned} & \hline \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-034-00 \\ 1-087-034-B 0 \end{array}$	$\begin{aligned} & 1,250.00 \\ & 1,550.00 \end{aligned}$	Contact factory						$\begin{gathered} \hline 20 \\ (9.0) \end{gathered}$	B3
$\begin{gathered} 35 \\ (47) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-087-044-00 } \\ 1-087-044-B 0 \end{array}$	$\begin{aligned} & 1,400.00 \\ & 1,700.00 \end{aligned}$	Contact factory						$\begin{gathered} 22 \\ (10.0) \end{gathered}$	B3
$\begin{gathered} \hline 50 \\ (68) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-087-054-00 } \\ \text { 1-087-054-B0 } \end{array}$	$\begin{aligned} & 1,700.00 \\ & 2,000.00 \end{aligned}$	Contact factory		$\begin{gathered} 7.93 \\ (201.28) \end{gathered}$	$\begin{gathered} 2.31 \\ (58.74) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{array}{c\|} 1.50 \\ (38.10) \end{array}$	$\begin{gathered} 23 \\ (10.4) \end{gathered}$	B3
$\begin{gathered} 75 \\ (102) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-087-064-00 } \\ \text { 1-087-064-B0 } \end{array}$	$\begin{aligned} & 2,200.00 \\ & 2,500.00 \end{aligned}$	Contact factory						$\begin{gathered} 23 \\ (10.4) \end{gathered}$	B3
$\begin{gathered} 105 \\ (142) \end{gathered}$	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 55 \end{aligned}$	$\begin{array}{\|l\|} \hline 1-087-084-00 \\ 1-087-084-B 0 \end{array}$	$\begin{aligned} & 2,900.00 \\ & 3,200.00 \end{aligned}$	Contact factory		$\begin{gathered} 8.43 \\ (213.97) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} 24 \\ (11.0) \end{gathered}$	B3

[^3]
Enclosure Protection: IP 56

Enclosure Material: Cast Iron Housing \& Endplate

Dimensional Data

Nominal Static Torque lb-ft (Nm)	Basic Model Number and List Price					Dimensions in Inches (Dimensions in Millimeters)						Discount Symbol
	Enclosure	AC	AC List Price*	DC	DC List Price*	A	C	AG	AE	SL		
										min	max ${ }^{1}$	
$\begin{gathered} 25 \\ (34) \end{gathered}$	IP 56	1-087-030-00	\$3,860	Consult Factory	\$4,430	8.63	1.50	0.97	2.63	1.88	8.00	B3
$\begin{gathered} 35 \\ (47) \end{gathered}$	IP 56	1-087-040-00	\$3,875	Consult Factory	\$4,445	8.63	1.50	0.97	2.63	1.88	8.00	B3
$\begin{gathered} 50 \\ (68) \end{gathered}$	IP 56	1-087-050-00	\$3,925	Consult Factory	\$4,495	8.63	1.50	0.97	2.63	1.88	8.00	B3
$\begin{gathered} 75 \\ (102) \end{gathered}$	IP 56	1-087-060-00	\$3,975	Consult Factory	\$4,545	8.63	1.50	0.97	2.63	1.88	8.00	B3
$\begin{gathered} 105 \\ (142) \end{gathered}$	IP 56	1-087-080-00	\$4,075	Consult Factory	\$4,645	9.13	2.00	0.97	3.13	2.38	8.50	B3

* Subtract $\$ 45.00$ for brake ordered less hub.
${ }^{1}$ SL max for $1.875^{\prime \prime}$ max dia. shaft $=2.32$ " for $50 \& 75 \mathrm{lb}$-ft brakes, \& $2.82^{\prime \prime}$ for 105 lb -ft brake
Specifications

Nominal Static Torque lb-ft $(\mathbf{N m})$	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate cycles/min	Thermal Capacity ${ }^{2}$ hp-sec/min (watts)	Inertia $\left(\mathbf{W k}^{2}\right)$ $\mathbf{l b - f t}^{2}$ $\left(\mathbf{k g m}^{2} \mathbf{x ~ 1 0}^{-4}\right)$	Wt. Lbs $(\mathbf{k g})^{* *}$
25 (34)	2	6	25	17.5 (21.8)	.089 (37.40)	75 (34)
35 (47)	2	6	25	17.5 (21.8)	.089 (37.40)	75 (34)
50 (68)	2	6	25	17.5 (21.8)	.089 (37.40)	75 (34)
75						
(102)	2	8	20	17.5 (21.8)	.089 (37.40)	76 (34.5)
105						
(142)	3	8	20	17.5 (21.8)	.129 (54.45)	80 (36.3)

Static Torque: 50 through $125 \mathrm{lb-ft}$
Enclosure Material: IP 23 - Sheet Metal Housing, Cast Iron Endplate. IP 54 - Cast Iron Housing and Endplate
Release Type: Knob, maintained with automatic reset. Vertical above IP 54 supplied with side release lever.
Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA Type 2 \& 4, respectively.
Installation, Service and Parts List: P/N 8-078-928-01 Rev. B brakes

Mounting: Horizontal, unless modified for vertical. Vertical mounting is defined as 15° or more from horizontal. Vertical above and vertical below require modification. Vertical above NEMA 4/4X includes side manual release. See SAB Modification Section for detail and list price adders.
Fanguard mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake Refer to Installation and Service Instruction sheets.
Specifications including bore sizes/voltages: Page 17
Modifications: Pages 54-63 Including New Manual Adjust Option

* Hub location

Dimensions for estimating only. For installation purposes request certified prints.
Dimensional Data/Unit Pricing (Discount Symbol B3)

Nominal Static Torque (lb-ft) (Nm)	Enclosure	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)				Wt. lbs (kg)
		AC	AC List Price*	DC	DC List Price*	A	AE	AG	C	
50	IP 23	1-087-151-00	\$1,600.00	1-087-155-00	\$2,170.00	$\begin{array}{r} 7.75 \\ (196.85) \\ \hline \end{array}$	$\begin{gathered} 2.19 \\ (55.56) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} 40 \\ (18.0) \\ \hline \end{gathered}$
50	IP 54	1-087-152-00	2,200.00	1-087-156-00	2,770.00	$\begin{gathered} 7.94 \\ (201.68) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (55.56) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} 53 \\ (24.0) \end{gathered}$
75	IP 23	1-087-161-00	2,100.00	1-087-165-00	2,670.00	$\begin{array}{\|c\|} \hline 7.75 \\ (196.85) \\ \hline \end{array}$	$\begin{gathered} 2.19 \\ (55.56) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} 44 \\ (20.0) \\ \hline \end{gathered}$
75	IP 54	1-087-162-00	2,700.00	1-087-166-00	3,270.00	$\begin{gathered} \hline 7.94 \\ (201.68) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (55.56) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \end{gathered}$	$\begin{gathered} 52 \\ (23.6) \end{gathered}$
105	IP 23	1-087-181-00	2,800.00	1-087-185-00	3,370.00	$\begin{array}{\|c\|} \hline 8.25 \\ (209.55) \\ \hline \end{array}$	$\begin{gathered} 2.69 \\ (68.26) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ (19.0) \\ \hline \end{gathered}$
105	IP 54	1-087-182-00	3,400.00	1-087-186-00	3,970.00	$\begin{array}{\|c\|} \hline 8.44 \\ (214.31) \\ \hline \end{array}$	$\begin{gathered} 2.69 \\ (68.26) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} 58 \\ (26.3) \end{gathered}$
125^{1}	IP 23	1-087-191-00	3,300.00	1-087-195-00	3,870.00	$\begin{gathered} 8.25 \\ (209.55) \\ \hline \end{gathered}$	$\begin{gathered} 2.69 \\ (68.26) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \\ \hline \end{gathered}$	$\begin{gathered} 46 \\ (19.0) \\ \hline \end{gathered}$
$125{ }^{1}$	IP 54	1-087-192-00	3,900.00	1-087-196-00	4,470.00	$\begin{gathered} 8.44 \\ (214.31) \\ \hline \end{gathered}$	$\begin{gathered} 2.69 \\ (68.26) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} 58 \\ (26.3) \end{gathered}$

* Subtract $\$ 45.00$ for brake ordered less hub. ${ }^{1}$ These model numbers and list prices include non-standard friction discs. For high inertia or overhauling loads, it is recommended that 81,000 or 82,000 series brakes be used, as these brakes have substantially higher thermal capacities (50\% higher for 81,000 series and 150% higher for 82,000 series).

Series 81,000 and 82,000
Mounting Face NEMA 324 and 326TC, TSC, UC
or USC, NEMA 364 and 365TC, TSC, UC or USC
NEMA 404 and 405 TC, TSC, UC or USC
81,000 Series Specifications

Nominal Static Torque	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate ${ }^{1}$	Thermal Capacity(2)	Inertia ($\mathbf{W k}^{\mathbf{2}}$)
$\begin{aligned} & \mathrm{lb-ft} \\ & (N m) \end{aligned}$			cycles/min	hp-sec/min (watts)	$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-3}\right) \end{gathered}$
$\begin{gathered} \hline 125 \\ (169) \\ \hline \end{gathered}$	2	9	15	$\begin{gathered} 30 \\ (373) \end{gathered}$	$\begin{array}{r} .192 \\ (8.06) \\ \hline \end{array}$
$\begin{aligned} & 175 \\ & (237) \end{aligned}$	2	9	15	$\begin{gathered} 30 \\ (373) \\ \hline \end{gathered}$	$\begin{array}{r} .192 \\ (8.06) \end{array}$
$\begin{array}{r} 230 \\ (312) \\ \hline \end{array}$	3	9	15	$\begin{gathered} 30 \\ (373) \\ \hline \end{gathered}$	$\begin{array}{r} .280 \\ (11.76) \end{array}$

82,000 Series Specifications

Nominal Static Torque	No. of Friction Discs	Coil Size		Maximum Solenoid Cycle Rate ${ }^{1}$		Thermal Capacity(2)	Inertia ($\mathbf{W k}^{\mathbf{2}}$)
$\begin{aligned} & \mathrm{lb}-\mathrm{ft} \\ & (\mathrm{Nm}) \end{aligned}$		AC	DC	cycles/min		hp-sec/min (watts)	$\begin{gathered} \mathrm{lb}^{\left(\mathrm{ft}^{2}\right.} \\ \left(\mathrm{kgm}^{2} \times 10^{-3}\right) \end{gathered}$
				AC	DC		
$\begin{gathered} 125 \\ (169) \\ \hline \end{gathered}$	2	9	9	15	15	$\begin{gathered} 50 \\ (621) \end{gathered}$	$\begin{array}{r} .490 \\ (20.58) \end{array}$
$\begin{gathered} 175 \\ (237) \\ \hline \end{gathered}$	2	9	9	15	15	$\begin{gathered} 50 \\ (621) \\ \hline \end{gathered}$	$\begin{array}{r} .490 \\ (20.58) \\ \hline \end{array}$
$\begin{gathered} 230 \\ (312) \\ \hline \end{gathered}$	3	9	9	15	15	$\begin{gathered} 50 \\ (621) \end{gathered}$	$\begin{array}{r} .704 \\ (29.57) \end{array}$
$\begin{gathered} 330 \\ (447) \\ \hline \end{gathered}$	3	K9	9	13	15	$\begin{gathered} 50 \\ (621) \\ \hline \end{gathered}$	$\begin{array}{r} .704 \\ (29.57) \\ \hline \end{array}$
$\begin{gathered} 440 \\ (597) \end{gathered}$	4	K9	9	13	15	$\begin{gathered} 50 \\ (621) \end{gathered}$	$\begin{array}{r} .918 \\ (38.56) \end{array}$

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ stop time of one second or less, with no heat absorbed from motor. Refer to "Selection Procedure Section. Derate thermal capacity by 25% for vertical mounting

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Example of a complete part number, Series 81,000:
1-081-011-02-NLF - Lead wire position
(internal and external, left and right)
460 Vac
2-1/8 bore and $1 / 2 \times 1 / 4$ keyway

Current Ratings (amperes)

CoilSize	Frequency	Voltage	Current	
			Inrush	Holding
9	60 Hz	115	44.0	1.6
		200	25.4	. 9
		230	22.0	. 8
		400	12.7	. 5
		460	11.4	. 4
		575	8.8	. 3
	50 Hz	110	32.1	1.2
		220	16.0	. 6
		380	11.1	. 4
	DC	24	56.4	. 7
		95	14.9	. 2
		115	11.4	. 1
		230	5.9	. 07
K9	60 Hz	115	50.0	2.2
		200	28.0	1.3
		230	25.0	1.1
		400	14.0	. 6
		460	12.5	. 6
		575	10.0	. 4
	50 Hz	110	36.0	1.6
		220	24.0	. 9
		380	12.5	. 6
	DC	-	-	-
		-	-	-
		-	-	-

Example of a complete part number, Series 82,000: 1-082-012-02-NLF - Lead wire position (internal and external, left and right) 460 Vac 2-1/8 bore and $1 / 2 \times 1 / 4$ keyway

81,000 Series Hub Selection

Character	Bore (in.)	Keyway** (in. x in.)	
A	1 1/8	1/4 X 1/8	
B*	$11 / 4$	$1 / 4 \times 1 / 8$	
C	$13 / 8$	$5 / 16 \times 5 / 32$	
D	$11 / 2$	$3 / 8 \times 3 / 16$	
E*	$19 / 16$	$3 / 8 \times 3 / 16$	
F	$15 / 8$	$3 / 8 \times 3 / 16$	
G*	$111 / 16$	$3 / 8 \times 3 / 16$	
H	$13 / 4$	$3 / 8 \times 3 / 16$	
$\\|^{*}$	$113 / 16$	$1 / 2 \times 1 / 4$	
J	$17 / 8$	$1 / 2 \times 1 / 4$	
K^{*}	1 15/16	$1 / 2 \times 1 / 4$	
L*	2	$1 / 2 \times 1 / 4$	
M*	2 1/16	$1 / 2 \times 1 / 4$	
N^{*}	$21 / 8$	$1 / 2 \times 1 / 4$	
O^{*}	$23 / 16$	$1 / 2 \times 1 / 4$	
P^{*}	$21 / 4$	$1 / 2 \times 1 / 4$	
Q*	$25 / 16$	$5 / 8 \times 5 / 16$	
R	$23 / 8$	$5 / 8 \times 5 / 16$	
S*	$27 / 16$	$5 / 8 \times 5 / 16$	
T	$21 / 2$	$5 / 8 \times 5 / 16$	
W	$11 / 8$	pilot bore	

Maximum allowable bore 2.500 in. $(76.200 \mathrm{~mm})$ (maximum shaft length not to exceed end of hub).
*These bores are non-standard. Add \$600.00 to List Price.
**Keyseats made to ANSI B17.1 standard.

82,000 Series Hub Selection

Character	Bore (in.)	$\begin{aligned} & \hline \text { Keyway** } \\ & \text { (in. x in.) } \\ & \hline \end{aligned}$
A	$11 / 8$	$1 / 4 \times 1 / 8$
B*	1 1/4	$1 / 4 \times 1 / 8$
C	$13 / 8$	5/16 X 5/32
D	1 1/2	3/8 $\times 3 / 16$
E*	19/16	$3 / 8 \times 3 / 16$
F*	$15 / 8$	3/8 $\times 3 / 16$
G*	$111 / 16$	3/8 $\times 3 / 16$
H	$13 / 4$	3/8 $\times 3 / 16$
${ }^{\text {I }}$	$113 / 16$	$1 / 2 \times 1 / 4$
J*	$17 / 8$	$1 / 2 \times 1 / 4$
K_{*}^{*}	1 15/16	$1 / 2 \times 1 / 4$
L*	2	$1 / 2 \times 1 / 4$
M*	$21 / 16$	$1 / 2 \times 1 / 4$
N_{*}	$21 / 8$	$1 / 2 \times 1 / 4$
O*	$23 / 16$	$1 / 2 \times 1 / 4$
P^{*}	$21 / 4$	$1 / 2 \times 1 / 4$
Q*	2 5/16	$5 / 8 \times 5 / 16$
R	$23 / 8$	$5 / 8 \times 5 / 16$
S*	27/16	$5 / 8 \times 5 / 16$
T	$21 / 2$	$5 / 8 \times 5 / 16$
	2 5/8	$5 / 8 \times 5 / 16$
V^{*}	$23 / 4$	$5 / 8 \times 5 / 16$
W	$11 / 8$	pilot bore
X	$27 / 8$	$3 / 4 \times 3 / 8$
$\mathrm{Y}^{*}{ }^{*}$	$215 / 16$	$3 / 4 \times 3 / 8$
Z	3	$3 / 4 \times 3 / 8$

Maximum allowable bore 3.000 in. (76.200 mm) (maximum shaft length not to exceed end of hub).
*These bores are non-standard. Add $\$ 600.00$ to List Price **Keyseats made to ANSI B17.1 standard.
Standard AC Voltage Ratings

Character	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
H	220	50
L	460	60
M	480	50
N	575	50
O	$110 / 220$	50
P	$115 / 230$	60
Q	$230 / 460$	60
R	$200 / 400$	60

Direct Current

Character	Voltage
U	24
V	36
W	48
X	95
Y	115
Z	230

Consult factory if other DC voltage is needed
or USC, NEMA 364 and 365 TC, TSC, UC or USC, NEMA 404 and 405 TC, TSC, UC or USC

12.5" AK, 11.0" AJ

Static Torque: 125 through $230 \mathrm{lb}-\mathrm{ft}$

Enclosure Material: Cast Iron

Release Type: Knob, maintained with automatic reset. Vertical above IP 54 supplied with side release lever.
Enclosure Protection: IP 23 and 54 (formerly referred to by Stearns as NEMA Type 2 \& 4, respectively).
Mounting: Fanguard-mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets.
Installation, Service and Parts List: P/N 8-078-921-00
Specifications, bores/voltages: Page 22
Modifications: Pages 54-63
Modification required for vertical mounting. Vertical above IP 54 includes side release. See SAB Modifications for details and list price adders.

- Self-Adjusting Design
- Splined Hub
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: 3600 Horizontal 2400 Vertical
- Coil Insulation: Standard Class B Optional Class H
- Certified: CSA File LR-6254
- ABS Type Approval Certified

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions see page 101):

Static Torque	Coil Size	T1	T2
All	9	56	27

* Hub location.

Dimensions for estimating only. For installation purposes request certified prints.

Dimensional Data/Unit Pricing (Discount Symbol C1)

Nomina Static Torque (lb-ft) (Nm)	Enclosure	Type	Basic Model Number and List Price (1)(2)		Dimensions in Inches(Dimensions in Millimeters)				Cast Iron Wt. Ibs (kg)(3)
					A(1) Cast Iron	AE	AG	C	
$\begin{gathered} \hline 125 \\ (169) \end{gathered}$	IP 23	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-081-011-0 X \\ 1-081-015-0 X \end{array}$	$\begin{array}{\|l\|} \hline \$ 4,800.00 \\ \$ 5,850.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.81 \\ (274.64) \end{array}$	$\begin{array}{\|c\|} \hline 2.56 \\ (65.09) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .94 \\ (23.81) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.44 \\ (36.51) \\ \hline \end{array}$	$\begin{gathered} 148 \\ (67.0) \end{gathered}$
$\begin{gathered} \hline 125 \\ (169) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-081-012-0X } \\ 1-081-016-0 X \\ \hline \end{array}$	$\begin{aligned} & 6,250.00 \\ & 7,300.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 10.88 \\ (276.22) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.56 \\ (65.09) \\ \hline \end{array}$	$\begin{gathered} .94 \\ (23.81) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.44 \\ (36.51) \\ \hline \end{array}$	$\begin{gathered} 151 \\ (69.0) \\ \hline \end{gathered}$
$\begin{gathered} 175 \\ (237) \\ \hline \end{gathered}$	IP 23	$\begin{aligned} & \hline \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-081-021-0X } \\ 1-081-025-0 X \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5,150.00 \\ 6,200.00 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 10.81 \\ (274.64) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.56 \\ (65.09) \\ \hline \end{array}$	$\begin{gathered} .94 \\ (23.81) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.44 \\ (36.51) \\ \hline \end{array}$	$\begin{gathered} \hline 148 \\ (67.0) \\ \hline \end{gathered}$
$\begin{gathered} \hline 175 \\ (237) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-081-022-0X } \\ 1-081-026-0 X \\ \hline \end{array}$	$\begin{aligned} & 6,600.00 \\ & 7,650.00 \end{aligned}$	$\begin{gathered} 10.88 \\ (276.22) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.56 \\ (65.09) \\ \hline \end{array}$	$\begin{gathered} .94 \\ (23.81) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.44 \\ (36.51) \\ \hline \end{array}$	$\begin{gathered} 151 \\ (69.0) \end{gathered}$
$\begin{gathered} \hline 230 \\ (312) \\ \hline \end{gathered}$	IP 23	$\begin{aligned} & \hline \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-081-031-0X } \\ 1 \text { 1-081-035-0X } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5,700.00 \\ 6,750.00 \end{array}$	$\begin{array}{\|c} \hline 11.31 \\ (287.34) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.06 \\ (77.79) \\ \hline \end{array}$	$\begin{gathered} \hline 1.44 \\ (36.51) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.94 \\ (49.21) \\ \hline \end{array}$	$\begin{gathered} 155 \\ (70.0) \\ \hline \end{gathered}$
$\begin{gathered} 230 \\ (312) \end{gathered}$	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-081-032-0X } \\ 1-081-036-0 X \\ \hline \end{array}$	$\begin{aligned} & 7,150.00 \\ & 8,200.00 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 11.38 \\ (288.92) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.06 \\ (77.79) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.44 \\ (36.51) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.94 \\ (49.21) \\ \hline \end{array}$	$\begin{gathered} 158 \\ (72.0) \\ \hline \end{gathered}$

(1) New! 9th digit indicates aluminum or cast iron housing 2 = Cast Iron
3 = Aluminum: Add . 38 " to "A" dimension
(2) Subtract $\$ 100.00$ for brake ordered less hub.
(3) Subtract 21 lbs . for aluminum housing. Foot mounting adds $40 \mathrm{lbs}(18.2 \mathrm{~kg})$ to weight.

Motor Frame Adapters

WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the "Selection Procedure" section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application requirements, before use of an adapter is considered.

To Adapt to NEMA Frame Size	AK Dim.	Reg. No.	Adapter Stock Number	Additional Shaft Length
	$\operatorname{in}_{(m m)}$			Required in. (mm)
$\begin{aligned} & \text { 182TC, 184TC, } \\ & \text { 213TC, 215TC, } \\ & \text { 254TC or } 256 \mathrm{TC} \end{aligned}$	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	$\begin{gathered} \text { 5-55-2041-00 } \\ \text { List \$1325 } \end{gathered}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
284TC or 286TC	$\begin{gathered} 10.50 \\ (266.70) \end{gathered}$	-11	$\begin{gathered} \text { 5-55-2043-00 } \\ \text { List } \$ 1325 \end{gathered}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
$\begin{gathered} \text { 444TSC and } \\ 445 T S C \end{gathered}$	$\begin{gathered} 16.00 \\ (406.40) \end{gathered}$	-16	$\begin{gathered} \text { 5-55-2045-00 } \\ \text { List \$1875 } \end{gathered}$	$\begin{gathered} .88 \\ (22.22) \end{gathered}$

For adapter dimensions, see Technical Data.

Mounting Face: NEMA 324 and 326 TC, TSC, UC or USC, NEMA 364 and 365 TC, TSC, UC or USC, NEMA 404 and 405 TC, TSC, UC or USC

12.5" AK, 11.0" AJ

Static Torque: 125 through $440 \mathrm{lb}-\mathrm{ft}$ Enclosure Material: Cast Iron
Release Type: Knob, maintained with automatic reset. Vertical above IP 54 supplied with side release lever.
Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA Type 2 \& 4 respectively).
Mounting: Fanguard-mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake -

- Self-Adjusting Design
- Splined Hub
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: 3600 Horizontal 2400 Vertical
- Coil Insulation: Standard Class B Optional Class H
- Certified: CSA File LR6254

Refer to Installation \& Service Instruction sheets.
Installation, Service and Parts List: P/N 8-078-922-10 Rev. A brakes
Specifications, bores/voltages: Page 22
Modifications: Pages 54-63
Modification required for vertical mounting. Vertical above IP 54 includes side release. See SAB Modifications for details and list price adders.

Dimensional Data/Unit Pricing (Discount Symbol C1)

Nominal Static Torque lb -ft (Nm)	Enclosure	Type	Basic Model Number and List Price \qquad (1) (2)		Dimensions in Inches (Dimensions in Millimeters)				Cast Iron Wt. Ibs (kg) (3)
					Cas	AE	AG	C	
	IP 23	DC	1-082-015-	$\begin{array}{\|l\|} \hline \$ 6,450.00 \\ \$ 8,015.00 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 4.31 \\ (109.54) \\ \hline \end{array}$			$\begin{gathered} 189 \\ (86.0) \\ \hline \end{gathered}$
	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-082-012-0X } \\ \text { 1-082-016-0X } \\ \hline \end{array}$	$\begin{aligned} & 7,450.00 \\ & 9,015.00 \\ & \hline \end{aligned}$	$\begin{gathered} 12.19 \\ (309.56) \\ \hline \end{gathered}$	$\begin{gathered} 4.31 \\ (109.54) \\ \hline \end{gathered}$	$\begin{gathered} 1.75 \\ (44.45) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.31 \\ (58.74) \\ \hline \end{array}$	$\begin{gathered} 189 \\ (86.0) \\ \hline \end{gathered}$
	IP 23	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-082-021-0) \\ 1-082-025-0 \end{array}$	$\begin{aligned} & \hline 6,700.00 \\ & 8,265.00 \end{aligned}$		$\begin{gathered} 4.31 \\ (109.54) \end{gathered}$	$\begin{gathered} 1.75 \\ (44.45) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.31 \\ (58.74) \\ \hline \end{array}$	$\begin{gathered} 189 \\ (86.0) \\ \hline \end{gathered}$
	IP 54	DC	1-082-026-0	$\begin{aligned} & 7,700.00 \\ & 9,265.00 \end{aligned}$	$\begin{gathered} 12.19 \\ (309.56) \end{gathered}$	$\begin{array}{c\|} \hline 4.31 \\ (109.54) \end{array}$	$\begin{gathered} 1.75 \\ (44.45) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.31 \\ (58.74) \end{array}$	$\begin{gathered} 189 \\ (86.0) \end{gathered}$
$\begin{gathered} 230 \\ (312) \\ \hline \end{gathered}$	23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1-082-031- \\ 1-082-035-1 \\ \hline \end{array}$	$\begin{aligned} & 7,200.00 \\ & 8,765.00 \end{aligned}$	$\begin{gathered} 12.12 \\ (307.98) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 4.31 \\ (109.54) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.38 \\ (60.32) \\ \hline \end{array}$	$\begin{gathered} 2.94 \\ (74.61) \\ \hline \end{gathered}$	$\begin{gathered} 190 \\ (86.0) \\ \hline \end{gathered}$
$\begin{gathered} 230 \\ (312) \\ \hline \end{gathered}$	IP 54	DC	1-082-036-0	$\begin{aligned} & 8,200.00 \\ & 9,765.00 \end{aligned}$	$\begin{gathered} 12.19 \\ (309.56) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 4.31 \\ (109.54) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.38 \\ (60.32) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.94 \\ (74.61) \\ \hline \end{array}$	$\begin{gathered} 190 \\ (86.0) \\ \hline \end{gathered}$
$\begin{gathered} \hline 330 \\ (447) \\ \hline \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-082-041-0 X \\ 1-082-045-0 X \\ \hline \end{array}$	$\begin{aligned} & 7,800.00 \\ & 9,365.00 \end{aligned}$	$\begin{gathered} 12.12 \\ (307.98) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.31 \\ (109.54) \\ \hline \end{array}$	$\begin{gathered} 2.38 \\ (60.32) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.94 \\ (74.61) \\ \hline \end{array}$	$\begin{gathered} 190 \\ (86.0) \\ \hline \end{gathered}$
$\begin{gathered} 330 \\ (447) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 1-082-042-0X } \\ & 1-082-046-0 X \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 8,800.00 \\ 10,365.00 \\ \hline \end{array}$	$\begin{gathered} 12.19 \\ (309.56) \\ \hline \end{gathered}$	$\begin{gathered} 4.31 \\ (109.54) \end{gathered}$	$\begin{gathered} 2.38 \\ (60.32) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 2.94 \\ (74.61) \\ \hline \end{array}$	$\begin{gathered} \hline 190 \\ (86.0) \\ \hline \end{gathered}$
$\begin{gathered} 440 \\ (597) \\ \hline \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \hline \text { 1-082-051-0X } \\ & 1-082-055-0 X \end{aligned}$	$\begin{array}{\|c\|} \hline 8,700.00 \\ 10,265.00 \\ \hline \end{array}$	$\begin{gathered} 13.38 \\ (339.72) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.56 \\ (141.29) \\ \hline \end{array}$	$\begin{gathered} 3.00 \\ (76.20) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.56 \\ (90.49) \\ \hline \end{array}$	$\begin{gathered} 192 \\ (87.0) \\ \hline \end{gathered}$
$\begin{gathered} 440 \\ (597) \\ \hline \end{gathered}$	54	$\begin{aligned} & \hline \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & 1-082-052-0 X \\ & 1-082-056-0 X \end{aligned}$	$\begin{array}{\|c\|} \hline 9,700.00 \\ \hline 11,265.00 \\ \hline \end{array}$	$\begin{gathered} 13.44 \\ (341.31) \end{gathered}$	$\begin{gathered} 5.56 \\ (141.29) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{array}{\|c\|} \hline 3.56 \\ (90.49) \\ \hline \end{array}$	$\begin{gathered} 192 \\ (87.0) \end{gathered}$

[^4]
Motor Frame Adapters

WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the Selection Procedure section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application requirements, before use of an adapter is considered.

To Adapt to NEMA Frame Size	AK Dim.	Reg. in No.	Adapter Stock Number	Additional Shaft Length Required
182TC, 184TC, 213TC, 215TC, 254TC or 256TC	8.50 (215.90)	-9	5-55-2042-00 List \$1325	1.19 (30.16)
284TC or 286TC	10.50 (266.70)	-11	5-55-2044-00 List \$2075	1.19 (30.16)
444TSC and	16.00 445TSC	-16	5-55-2046-00 List \$1875	1.75 (406.40)

For adapter dimensions, see Technical Data.

Series 86,100 (1-086-1XX)
 Mounting Face: NEMA 505TC, TSC, UC or USC 16.5" AK, 14.5" AJ

Static Torque: 500 through $1000 \mathrm{lb}-\mathrm{ft}$

Enclosure Material: Cast Iron

Release Type: Knob, maintained with automatic reset Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA type $2 \& 4$ respectively).
Mounting: Fanguard-mounted brakes requiring IP 54 protection may require additional sealing measures beyond seals provided with the brake - Refer to Installation \& Service Instruction sheets.
Installation, Service and Parts List: P/N 8-078-926-00
Additional 86,000 Specs: Double Solenoid Design Terminal Block Provided.

- Self-Adjusting Design
- Splined Hub
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: 1800 rpm
- Coil Insulation: Standard Class B Optional Class H
- Certified: CSA File LR-6254
- ABS Type Approval Certified

Modification required for vertical mounting, available through $750 \mathrm{lb}-\mathrm{ft}$ only.
See SAB Modifications for list price adders.

*86,100 Series $\mathrm{AK}=16.502 / 16.507 \mathrm{AJ}=14.50$
Dimensions for estimating only. For installation purposes request certified prints.

Dimensional Data/Unit Pricing (Discount Symbol C1)

Nominal Static Torque (lb-ft) (Nm)	Enclosure	Type	Basic Model Number and List Price (1) (2)		Dimensions in Inches(Dimensions in Millimeters)				Cast Iron Wt. Ibs (kg) (3)
					$\begin{aligned} & \text { A } \\ & \text { Cast } \\ & \text { Iron } \end{aligned}$	AG	C	E	
$\begin{aligned} & \hline 500 \\ & (678) \end{aligned}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-086-X 21-02 \\ 1-086-X 25-02 \end{array}$	$\begin{aligned} & \$ 14,000.00 \\ & \$ 16,625.00 \end{aligned}$	$\begin{gathered} 13.31 \\ (338.14) \end{gathered}$	$\begin{gathered} .75 \\ (19.05) \end{gathered}$	$\begin{array}{r} 1.5 \\ (38.1) \end{array}$	$\begin{gathered} \hline .94 \\ (23.88) \end{gathered}$	$\begin{array}{\|c\|} \hline 310 \\ (141.0) \end{array}$
$\begin{gathered} 500 \\ (678) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 1-086-X22-02 } \\ 1-086-X 26-02 \end{array}$	$\begin{aligned} & \hline 15,500.00 \\ & 18,125.00 \end{aligned}$	$\begin{array}{\|c} \hline 13.38 \\ (339.72) \\ \hline \end{array}$	$\begin{gathered} 1.69 \\ (42.86) \\ \hline \end{gathered}$	$\begin{gathered} 2.44 \\ (61.91) \\ \hline \end{gathered}$	$\begin{gathered} .0 \\ (0.0) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 320 \\ (145.0) \\ \hline \end{array}$
$\begin{gathered} \hline 750 \\ (1017) \\ \hline \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1-086-X 31-02 \\ 1-086-X 35-02 \end{array}$	$\begin{array}{l\|} \hline 15,500.00 \\ 18,125.00 \\ \hline \end{array}$	$\begin{gathered} 13.31 \\ (338.14) \\ \hline \end{gathered}$	$\begin{gathered} 1.12 \\ (28.58) \\ \hline \end{gathered}$	$\begin{array}{r} 2.25 \\ (57.15) \\ \hline \end{array}$	$\begin{array}{r} .94 \\ (23.88) \\ \hline \end{array}$	$\begin{gathered} \hline 330 \\ (150.0) \\ \hline \end{gathered}$
$\begin{gathered} \hline 750 \\ (1017) \\ \hline \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 1-086-X32-02 } \\ 1-086-X 36-02 \end{array}$	$\begin{array}{l\|} \hline 17,000.00 \\ 19,625.00 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 13.38 \\ (339.72) \\ \hline \end{array}$	$\begin{gathered} 2.06 \\ (52.39) \\ \hline \end{gathered}$	$\begin{array}{r} 3.19 \\ (80.96) \\ \hline \end{array}$	$\begin{gathered} .0 \\ (0.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 340 \\ (154.0) \\ \hline \end{array}$
$\begin{gathered} 1000 \\ (1356) \end{gathered}$	IP 23	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-086-X 41-02 \\ 1-086-X 45-02 \\ \hline \end{array}$	$\begin{aligned} & \hline 17,000.00 \\ & 19.625 .00 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 13.31 \\ (338.14) \\ \hline \end{array}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ (76.2) \\ \hline \end{gathered}$	$\begin{array}{r} .94 \\ (23.88) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 350 \\ (159.0) \\ \hline \end{array}$
$\begin{gathered} 1000 \\ (1356) \end{gathered}$	IP 54	$\begin{aligned} & \text { AC } \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 1-086-X42-02 } \\ 1-086-X 46-02 \end{array}$	$\begin{array}{\|r\|} \hline 18,500.00 \\ 21,125.00 \\ \hline \end{array}$	$\begin{gathered} 13.38 \\ (339.72) \\ \hline \end{gathered}$	$\begin{gathered} 2.44 \\ (61.91) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.94 \\ (100.01) \\ \hline \end{array}$	$\begin{gathered} .0 \\ (0.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 360 \\ (164.0) \\ \hline \end{array}$

[^5]
Motor Frame Adapters

To adapt to NEMA Frame Size	AK. Dim	Reg. No.	Adapter Stock Number	Additional Shaft Length Required
	$\begin{gathered} \text { in. } \\ (m m) \end{gathered}$			$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$
324TC, 326TC, 364TC, 365TC, 404TC or 405TC	$\begin{array}{\|c\|} 12.50 \\ (317.50) \end{array}$	-13	$\begin{gathered} 5-55-6041-00 \\ \text { List } \$ 2800 \end{gathered}$	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$

For adapter dimensions, see Technical Data.

Engineering Specifications*

Nominal Static Torque	No. of Friction Discs	Solenoid Size (1)-ft		AC	Maximum Solenoid (Nm)		

* All specifications are also applicable to the 86,100 Series.
(1) Two required.
(2) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(3) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to "Selection Procedure" Section.

Current Ratings (amperes)

Coil Size	Voltage: 60 Hz						
	Current	$\begin{aligned} & 115 \\ & \text { VAC } \end{aligned}$	$\begin{array}{r} 200 \\ \text { VAC } \end{array}$	$\begin{aligned} & 230 \\ & \text { VAC } \end{aligned}$	$\begin{array}{r} 400 \\ \text { VAC } \end{array}$	$\begin{aligned} & 460 \\ & \text { VAC } \end{aligned}$	$\begin{array}{r} 575 \\ \text { VAC } \end{array}$
K9	Inrush	100.	56.0	50.0	28.0	25.0	20.0
	Holding	4.4	2.4	2.2	1.2	1.2	. 8
	Voltage: 50 Hz						
	Current	$\begin{gathered} 110 \\ \text { VAC } \end{gathered}$	$\begin{aligned} & 220 \\ & \text { VAC } \end{aligned}$	$\begin{array}{r} 380 \\ \text { VAC } \end{array}$			
	Inrush Holding	$\begin{array}{r} 72.0 \\ 3.2 \end{array}$	$\begin{array}{r} 48.0 \\ 1.8 \end{array}$	$\begin{array}{r} 25.0 \\ 1.2 \end{array}$	-	-	-
9	Voltage: DC						
	Current	$\begin{gathered} 24 \\ \text { VDC } \end{gathered}$	$\begin{gathered} 95 \\ \text { VDC } \end{gathered}$	$\begin{array}{r} 115 \\ \text { VDC } \end{array}$	$\begin{gathered} 230 \\ \text { VDC } \end{gathered}$		
	Inrush Holding	$\begin{array}{r} 112.8 \\ 1.4 \end{array}$	$\begin{array}{r} 29.8 \\ .4 \end{array}$	$\begin{array}{r} 22.8 \\ .2 \end{array}$	11.8 .14	-	-

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Hub Selection

Character	Bore (in.)	Keyway* (in. x in.)
D	$2-1 / 8$	$1 / 2 \times 1 / 14$
H	$2-3 / 8$	$5 / 8 \times 5 / 16$
K	$2-5 / 8$	$5 / 8 \times 5 / 16$
L	$2-3 / 4$	$5 / 8 \times 5 / 16$
N	$2-7 / 8$	$3 / 4 \times 3 / 8$
P	3	$3 / 4 \times 3 / 8$
T	$3-3 / 8$	$7 / 8 \times 7 / 16$
V	$3-1 / 2$	$7 / 8 \times 7 / 16$
W	$1-7 / 8$	pilot bore
Z	4	$1 \times 1 / 2$

Maximum allowable bore 4.500 in . (maximum
shaft length not to exceed end of hub)
For through-shaft applications, 4.000
is maximum.
Standard AC
Voltage Ratings

Character	Voltage	$\mathbf{H z}$
B	115	60
D	110	50
E	200	60
F	230	60
	190	50
H	220	50
L	460	60
	380	50
M	415	50
N	575	60

Direct Current

Character	Voltage
U	24
V	36
W	48
X	95
Y	115
Z	230

Contact factory if other
DC voltage is needed.
*Keyseats made to ANSI B17.1 standard
Single voltage coils only dual voltage coils not allowed

Enclosures for standard Stearns disc brakes are designed to prevent accidental contact with the internal mechanism while keeping contaminants from the operating parts. Many installations, however, require additional protection due to the presence of explosive gases or ignitable dusts in the atmosphere. Hazardous locations are defined in the National Electrical Code (NEC) and designated by Class, Division and Group. For a better understanding of hazardous locations, or for definitions of hazardous location terminology, please refer to: http://www.ul.com/global/eng/pages/ offerings/services/hazardouslocations/.

- Class I - Locations where the atmosphere may contain flammable gases or vapors in explosive or ignitable concentrations. An electric disc brake for Class I locations must be built in such a manner that any ignition of gases or vapors within the brake will not result in rupture of the enclosure or allow a flame or spark to travel from within the brake to the surrounding hazardous atmosphere.
- Class II - Locations with combustible dust in suspension in the atmosphere. An electric disc brake for Class II locations must be enclosed in a manner which precludes entry of ignitable dusts or exit of any arcs, sparks, or hot gases which may cause ignition of dusts suspended in the surrounding atmosphere or accumulated on the enclosure. The exterior surface temperature of the brake enclosure must be limited so that it can function at its maximum-rated duty cycle without causing dehydration or carbonization of dust that accumulates on the enclosure.
- Divisions - Each hazardous-location Class is also divided into two Divisions, 1 and 2. Division 1 is a normally hazardous location. Division 2 is normally not hazardous. Division 1 brakes can be used in both types of locations. Division 2 can be used in Division 2 environments ONLY.
- Groups - Class I gases and vapors are listed in four Groups A, B, C and D, based on specific properties such as maximum explosion pressure and ignition temperature. Class II airborne dusts are listed in three Groups: E, F, and G. The dust properties considered include thermal and electrical conductivity and ignition temperature.

Selection

When specifying a Stearns hazardouslocation disc brake, the Class and Group designations of the hazardous atmosphere and its ignition temperature must be known. The selection table gives the hazardous atmospheres that Stearns brakes are suitable for, along with the brake's maximum operating
temperature. For more information on hazardous location responsibilities, see: http://www.ul.com/global/eng/pages/ offerings/services/hazardouslocations/
Step 1 - Determine the Class and Group designation of the hazardous atmosphere.
Step 2 - For Class I hazardous substances, determine the ignition temperature of the explosive gas or vapor. Select a brake listed for the appropriate group with a maximum external surface temperature that does not exceed the ignition temperature of the explosive gas or vapor.
Step 3 - For Class II hazardous substances, select a brake listed for the appropriate group.
Ignition temperatures of Combustible Dusts may be found in NFPA publication NFPA 499 Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas. Ignition temperatures of Flammable Liquids, Gases and Vapors may be found in NFPA publication NFPA 497 Recommended Practice for the Classification of Flammable Liquids, Gases and Vapors and of Hazardous (Classified) locations for Electrical Installations in Chemical Process Areas.

Brake Labels and Listing

Stearns brakes for use in hazardous locations are marked to show the Class, Group, and maximum Class II operating temperature (in a $40^{\circ} \mathrm{C}$ ambient) of the brake enclosure, as well as the minimum Class I ignition temperature of the gases or vapors to which they can be exposed.
Generally, compliance with the NEC is demonstrated by UL Listing of the product in Underwriters Laboratories Hazardous Location Equipment Directory. A label displaying the UL Listing mark and required rating information will be found on each Stearns brake to confirm the Listing.

In Canada, the Canadian Standards Association (CSA) is an organization with the responsibility to publish and administer national electrical standards as well as to test and certify electrical products. The CUL or CSA monogram will be found on Stearns hazardous-location brakes sold in Canada to confirm certification.

Stearns motor-mounted, hazardouslocation electric disc brakes are Listed only when mounted directly to a Listed hazardous-location motor of the same Class and Group at the motor manufacturer's facility, and where the combination has been accepted by UL. This procedure completes the explosionproof assembly of the brake. However, foot-mounted Listed hazardouslocation disc brakes are also available for coupling to a motor, and may be installed by anyone.
These brakes are listed by UL (Underwriters Laboratories, Inc.,) for use in certain locations classified as hazardous. Installation and servicing must be in compliance with all existing local safety codes. All wiring and electrical connections must comply with the National Electric Code (NEC) and local electrical codes in effect at the time. For additional information see the Underwriters Laboratories (UL) website http://www.ul.com/hazloc/codes/html.
HazLoc inspection authorities are responsible for verifying and authorizing the use of suitably designed, manufactured and installed HazLoc equipment. When questions arise always consult the local Authority Having Jurisdiction (AHJ) for directions and approvals.

Hazardous-Location Brake Enclosures

Division 1, hazardous location brakes are typically provided with machined components, without gaskets. Series 65300 brakes can be provided with gaskets to meet IP 55, 56 or Type 4 enclosure protection. Series 87300 brakes can be provided with gaskets to meet IP 55, 56 or 57 enclosure protection. Series 82300 can be provided with IP 56 enclosure protection. All Division 1 enclosures prevent flame propagation to the outside atmosphere through tortuous flame paths having controlled clearances. If the brake is used in a high humidity or low temperature environment, internal electric heaters should be used.
Division 2 hazardous location brakes are provided with an IP 55 enclosure. Heater and proximity switch options are limited to Division 2, Class II brakes.

A major design requirement of hazardous-location brakes is to limit exterior surface temperature. The surface temperature of the enclosure must not exceed a specified limit as a result of heat energy created in stopping the motor and load. This NEC restriction on the exterior surface temperature limits the hazardous-location brake's ability to dissipate heat, resulting in less thermal capacity than a comparable brake with a standard or dust-tight, waterproof enclosure.

THEREFORE, HAZARDOUS-LOCATION BRAKES ARE INTENDED ESSENTIALLY FOR NON-CYCLIC OR HOLDING PURPOSES, BUT MAY BE USED FOR STOPPING LIGHT INERTIAL LOADS.

Hazardous Location Brake Selection Table

Classification		Minimum Auto-Ignition Temperature of Atmosphere	Minimum Layer or Cloud Ignition Temperature	T Code	Brake Series Division 1	Brake Series Division 2
Class	Group					
1	A	$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$		T3C		56800, 87800
	B	$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$		T3C		56800, 87800
	C	$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$		T5	87300	
		$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$		T3C		56800, 87800
		$180^{\circ} \mathrm{C} / 356^{\circ} \mathrm{F}$		T3A	65300, 82300	
	D	$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$		T5	87300	
		$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$		T3C		56800, 87800
		$180^{\circ} \mathrm{C} / 356^{\circ} \mathrm{F}$		T3A	65300, 82300	
11	E		$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$	T5	87300	
			$165^{\circ} \mathrm{C} / 329^{\circ} \mathrm{F}$	T3B	65300*, 82300*	
	F		$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$	T5	87300	
			$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$	T3C		56800, 87800
			$165^{\circ} \mathrm{C} / 329^{\circ} \mathrm{F}$	T3B		87800
			$165^{\circ} \mathrm{C} / 329^{\circ} \mathrm{F}$	T3B	65300, 82300	
	G		$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$	T5	87300	
			$160^{\circ} \mathrm{C} / 320^{\circ} \mathrm{F}$	T3C		56800, 87800
			$165^{\circ} \mathrm{C} / 329^{\circ} \mathrm{F}$	T3B		87800
			$165^{\circ} \mathrm{C} / 329^{\circ} \mathrm{F}$	T3B	65300, 82300	
NOTE: Models with asterisk (*) group E available in select models only, consult factory.						

*Series 65,300-07 (New Design Close Coupled) and 65,300-09 (Fan Guard Mount) are Class I Group C and D, Class II Group F and G only
Maximum exterior surface temperature is based on operation in an ambient of $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.

65,300 and $87,300 \& 82,300$

These brakes rely on a thermostat switch wired to the motor control circuit to limit the brake's enclosure surface temperature.
Refer to the circuit diagram. If the brake begins to overheat, the thermostat TSW2 switch will open and interrupt the motor starter and brake solenoid current, causing the brake to set. A second thermostat TSW1 will close on Series $65, \mathrm{X00}$, or will open on Series $87,300^{* *}$ and $82,300^{* *}$ brakes. The TSW1 switch can be used to actuate alarm or warning light. This switch actuates at a lower temperature than TSW2, and will alert the equipment operator of an impending thermal overload.

Circuit Diagram

**TSW1 is optional on 87,300 and 82,300 series brakes.

Division I Hazardous Location

 Mounting Face: NEMA 56C, 143TC and 145TC 4.5" AK, 5.88" AJHazardous-location brakes are intended essentially for non-cyclic or holding purposes, but may be used for stopping light inertial loads.

Unit Pricing (Discount Symbol B0) 1-065-3XX-05 Series Close Coupled Hazardous location NEMA 7, 9

Model Number	Nominal Static Torque (lb-ft) (Nm)	Dimensions in Inches (mm)		List Price	Weight lbs (kg)
		SL Max.	SL Min.		
1-065-311-05-XXX	$\begin{aligned} & 1.5 \\ & \text { (2) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.95 \\ (74.93) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 2.25 \\ (57.15) \\ \hline \end{array}$	\$2,330.00	$\begin{gathered} 38 \\ (17.2) \\ \hline \end{gathered}$
1-065-321-05-XXX	$\begin{aligned} & 3 \\ & \hline(4) \end{aligned}$	$\begin{gathered} 2.95 \\ (74.93) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.15) \end{gathered}$	2,450.00	$\begin{gathered} 38 \\ (17.2) \end{gathered}$
1-065-331-05-XXX	$\begin{aligned} & \hline 6 \\ & \text { (8) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.95 \\ (74.93) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	2,590.00	$\begin{gathered} 40 \\ (18.1) \\ \hline \end{gathered}$
1-065-351-05-XXX	$\begin{gathered} 10 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 2.95 \\ (74.93) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	2,795.00	$\begin{gathered} 45 \\ (20.4) \\ \hline \end{gathered}$
1-065-361-05-XXX	$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 2.95 \\ (74.93) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \end{gathered}$	2,915.00	$\begin{gathered} 45 \\ (20.4) \\ \hline \end{gathered}$

1-065-3XX-07 Close Coupled

Hazardous location NEMA 7, 9

Model Number	Enclosure	Static Torque $(\mathrm{lb-ft})$	List Price	Weight lbs (kg)
1-065-312-07-XXX	IP 56	1.5	$\$ 2,915.00$	$52(23.6)$
1-065-322-07-XXX	IP 56	3	$\$ 3,065.00$	$52(23.6)$
1-065-332-07-XXX	IP 56	6	$\$ 3,240.00$	$57(25.8)$
1-065-352-07-XXX	IP 56	10	$\$ 3,495.00$	$57(25.8)$
1-065-362-07-XXX	IP 56	15	$\$ 3,645.00$	$57(25.8)$

Engineering Specifications

Nominal Static Torque (lb-ft) (Nm)	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate(1)	Thermal Capacity (2)	Inertia (Wk ${ }^{\mathbf{2}}$)
			cycles/min	hp-sec/min (watts)	$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \\ \hline \end{gathered}$
1.5 (2)	1	4	40	2 (25)	. 008 (3.36)
3 (4)	1	4	40	2 (25)	. 008 (3.36)
6 (8)	1	K4	40	2 (25)	. 008 (3.36)
10 (14)	2	K4	40	2 (25)	. 014 (5.58)
15 (20)	2	K4+	40	2 (25)	. 014 (5.58)

(1) Maximum solenoid cycle rate is $40 \mathrm{cycles} / \mathrm{min}$., based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is $2 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$. (25 watts) based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to "Selection Procedure" Section.

Ordering and Identification Information

Example of a complete part number:
1-065-351-05-BFB

Standard AC Voltage Ratings

Char- acter	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
H	190	50
L	460	50
M	380	60
N	515	50
O	$110 / 220$	50
P	$115 / 208-230$	60
Q	$208-230 / 460$	60
R	$190 / 380$	50

Hub Selection

Char- acter	Bore (in.)	Keyway** (in. x in.)
A^{*}	$5 / 8$	$1 / 8 \times 1 / 16$
B	$5 / 8$	$3 / 16 \times 3 / 32$
C	$3 / 4$	$3 / 16 \times 3 / 32$
D	$7 / 8$	$3 / 16 \times 3 / 32$
K	$1 / 2$	$1 / 8 \times 1 / 16$
maximum allowable bore	1.0 in. $(22.40 \mathrm{~mm})$	

* These bores are non-standard Add $\$ 325.00$ to list price.
** Keyseats made to ANSI B17.1 standard

Modifications are availablesee SAB Modification Section

Current Ratings (amperes)

Solenoid Coil Size	AC Current	Voltage: 60 Hz						Voltage: 50 Hz		
		115	200	230	400	460	575	110	220	380
4	Inrush	3.6	2.1	1.8	1.1	. 9	. 7	4.1	2.1	. 9
	Holding	. 3	. 2	. 2	. 08	. 08	. 06	. 3	. 2	. 08
K4	Inrush	4.3	2.5	2.2	1.3	1.1	. 9	3.8	1.9	1.1
	Holding	. 3	2	2	. 1	. 08	. 07	. 4	2	. 08
K4+	Inrush	4.6	2.5	2.3	1.2	1.0	. 9	4.9	2.0	1.0
	Holding	4	2	. 2	. 1	. 1	. 08	. 4	. 2	. 1

1-065-3XX-05 Series

Mounting Requirements: 1-065-3XX-05 Series Hazardous Location Motor Mounted Brake is used for mounting close coupled (directly) to the motor end bell. If the brake is to be mounted to a motor fan guard, or if a motor frame adapter is incorporated, it is recommended that Series 1-065-3XX-09 be used, as it provides additional bearing support for the longer shaft that is required. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.
Certified: Series 65,300-05 (1-065-3XX-05) USL/CNL, File E-14893, for Class I, Group C and D and Class II, Group E, F and G
Class I, Zone 1, Group IIA and IIB
Enclosure Protection: IP 23 and Hazardous Location NEMA 7, 9
Dimensions for estimating only.
Installation and Service Instructions: P/N 8-078-925-13 Rev. C \& D brakes
For installation purposes request certified prints.
Parts List: P/N 8-078-913-13 Rev. C \& D brakes

1-065-3XX-07 Series

Mounting Requirements: 1-065-3XX-07 Series Hazardous Location Motor Mounted Brake is used for mounting close coupled (directly) to the motor end bell. If the brake is to be mounted to a motor fan guard, or if a motor frame adapter is incorporated, it is recommended that Series 1-065-3XX-09 be used, as it provides additional bearing support for the longer shaft that is required. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.
Certified: Series 65,300-07 (1-065-3XX-07) USL/CNL Listed, File E-14893, for Class I, Group C and D and Class II, Group F and G Class I, Zone 1, Group IIA and IIB
Enclosure Protection: IP 56, and Hazardous Location NEMA 7, 9, UL Type 4
Installation and Service Instructions: P/N 8-078-925-09
Parts List: P/N 8-078-913-09

Note: 65,300 Series Close-Coupled Brakes (-07) must be mounted directly to motor endbell.

1-065-3XX-09 Fan-Guard Mount IP 23
Hazardous location NEMA 7, 9

Model Number	Static Torque Ib-ft $(\mathbf{N m})$	List Price	Weight lbs (kg)
1-065-311-09-XXX	1.5 (2)	$\$ 2,830.00$	52 (23.6)
1-065-321-09-XXX	3 (4)	$2,950.00$	52 (23.6)
1-065-331-09-XXX	6 (8)	$3,090.00$	57 (25.8)
1-065-351-09-XXX	10 (14)	$3,295.00$	57 (25.8)
1-065-361-09-XXX	15 (20)	$3,415.00$	57 (25.8)

1-065-3XX-09 Series

Mounting Requirements: 1-065-3X1-09 Series Hazardous Location Motor Mounted Brake is recommended for mounting to a motor fan guard or for use with a motor frame adapter. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.

Enclosure Protection: IP 23 and Hazardous Location NEMA 7, 9
Certified: 65,300-09 (1-065-3XX-09)
USL/CNL File E-14893, for Class I, Group C and D and Class II, Group F and G
Class I, Zone 1, Group IIA and IIB
Installation and Service Instructions: P/N 8-078-925-09
Parts List: P/N 8-078-913-09
Dimensions for estimating only.
For installation purposes request certified prints.

Series 87,300-00 and 87,300-02
(1-087-3XX) Motor Mounted Division I Hazardous Location Mounting Face: NEMA 182TC, 184TC, 213TC, 215TC, 254TC, 256TC 8.5" AK, 7.25" AJ

Static Torque: 10 through $105 \mathrm{lb}-\mathrm{ft}$ Enclosure Material: Cast Iron
Release Type: Knob
Modification required for vertical above mounting. For vertical below, modification required on $50-105 \mathrm{lb}-\mathrm{ft}$. See SAB
Modification Section for list price adders.

- Self-Adjusting Design BACK TO TABLE OF CONTENTS
- Epoxy Encapsulated Coil Construction, with Class H Insulation
- NC Thermostat
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: Horizontal 4000 rpm, Vertical 3000 rpm
- ABS Type Approval Certified.

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$10,15,25,50$	$5 \& 6$	42	20
$35,75,105$	8	48	20

Hazardous-location brakes are intended essentially for non-cyclic or holding purposes, but may be used for stopping light inertial loads.

Series 87,300-00

Enclosure Protection: IP 23, IP 55 or IP 57. For IP 55 and IP 57 protection, the brake must be mounted close coupled to the motor end bell (a motor frame adapter may be included). Hazardous Location NEMA 7, 9.
Mounting Requirements: 1-087-3XX-00 Series Hazardous Location Motor Mounted Brake is recommended for mounting close coupled (directly) to the motor end bell. If the brake is to be mounted to a motor fan guard, or if a motor frame adapter is incorporated, it is recommended that Series $1-087-3 X X-02$ be used, as it provides additional bearing support for the longer shaft that is required. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.
Certified: UL Listed, File E-14893 for Class I, Group C and D and Class II, Group F and G.
CSA Certified, File LR-9584 for Class I, Group C and D, and Class II, Group E, F and G.
Installation and Service Instructions: P/N 8-078-927-03
Dimensions for estimating only. For installation
Parts List: P/N 8-078-917-03 for IP 23 8-078-917-23 for IP 55 purposes request certified prints.

Outline Drawing for IP 23 \& 55

Dimensional Data/Unit Pricing (Discount Symbol D1)

Model Number	Enclosure	Nominal Static Torque (lbft) (Nm)	List Price	Dimensions in Inches (Dimensions in Millimeters)					Weight lbs (kg)
				A	AE	AG	C	$\begin{gathered} \text { SL } \\ \pm .05^{\prime \prime} \end{gathered}$	
1-087-311-00-XXX	IP 23	$\begin{gathered} 10 \\ (14) \end{gathered}$	\$3,350.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 62 \\ (28.0) \end{gathered}$
1-087-314-00-XXX	IP 55		4,150.00						
1-087-321-00-XXX	IP 23	$\begin{gathered} \hline 15 \\ (20) \end{gathered}$	3,500.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 63 \\ (28.6) \end{gathered}$
1-087-324-00-XXX	IP 55		4,300.00						
1-087-331-00-XXX	IP 23	$\begin{gathered} 25 \\ (34) \end{gathered}$	3,725.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 63 \\ (28.6) \end{gathered}$
1-087-334-00-XXX	IP 55		4,525.00						
1-087-341-00-XXX	IP 23	$\begin{gathered} 35 \\ (47) \end{gathered}$	4,000.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 63 \\ (28.6) \end{gathered}$
1-087-344-00-XXX	IP 55		4,800.00						
1-087-351-00-XXX	IP 23	$\begin{gathered} 50 \\ (68) \end{gathered}$	4,700.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 64 \\ (29.0) \end{gathered}$
1-087-354-00-XXX	IP 55		5,500.00						
1-087-361-00-XXX	IP 23	$\begin{gathered} 75 \\ (102) \end{gathered}$	5,700.00	$\begin{gathered} 9.34 \\ (237.33) \end{gathered}$	$\begin{gathered} 3.22 \\ (81.79) \end{gathered}$	$\begin{gathered} 2.25 \\ (57.2) \end{gathered}$	$\begin{gathered} 2.76 \\ (70.1) \end{gathered}$	$\begin{gathered} 2.56 \\ (65.0) \end{gathered}$	$\begin{gathered} 65 \\ (29.5) \end{gathered}$
1-087-364-00-XXX	IP 55		6,500.00						
1-087-381-00-XXX	IP 23	$\begin{gathered} \hline 105 \\ (142) \end{gathered}$	7,350.00	$\begin{gathered} 10.34 \\ (262.73) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 2.75 \\ (69.9) \end{gathered}$	$\begin{gathered} 3.73 \\ (94.7) \\ \hline \end{gathered}$	$\begin{gathered} 3.53 \\ \text { (89.7) } \end{gathered}$	$\begin{gathered} 72 \\ (32.7) \\ \hline \end{gathered}$
1-087-384-00-XXX	IP 55		8,150.00						

Enclosure Protection: IP 57

Certified: UL Listed, File E-14893 for Class I, Group C and D and Class II, Group E, F and G.

Dimensional Data / Unit Pricing (Discount Symbol D1)

Model Number	Enclosure	Nominal Static Torque lb-ft (Nm)	List Price	Dimensions in Inches (Dimensions in Millimeters)					$\begin{aligned} & \text { Wt. } \\ & \text { Lbs } \\ & (\mathrm{kg})^{* *} \end{aligned}$
				A	C	SL	AE	G	
1-087-318-00-XXX	IP 57	$\begin{gathered} 10 \\ (14) \end{gathered}$	\$6,820	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 63 \\ (28.6) \end{gathered}$
1-087-328-00-XXX	IP 57	$\begin{gathered} 15 \\ (20) \end{gathered}$	\$6,970	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 64 \\ (29) \end{gathered}$
1-087-338-00-XXX	IP 57	$\begin{gathered} 25 \\ (34) \end{gathered}$	\$7,195	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 64 \\ (29) \end{gathered}$
1-087-348-00-XXX	IP 57	$\begin{gathered} 35 \\ (47) \end{gathered}$	\$7,470	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 64 \\ (29) \end{gathered}$
1-087-358-00-XXX	IP 57	$\begin{gathered} 50 \\ (68) \end{gathered}$	\$8,170	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 65 \\ (29.5) \end{gathered}$
1-087-368-00-XXX	IP 57	$\begin{gathered} 75 \\ (102) \end{gathered}$	\$9,170	11.57	2.76	2.56	3.22	2.25	$\begin{gathered} 66 \\ (30) \end{gathered}$
1-087-388-00-XXX	IP 57	$\begin{gathered} 105 \\ (142) \end{gathered}$	\$10, 820	12.57	3.73	3.53	4.22	2.75	$\begin{gathered} 73 \\ (33.1) \end{gathered}$

(1-087-3XX) Motor Mounted

Division I Hazardous Location

Series 87,300-02

Enclosure Protection: IP 23, IP 55 or IP 56. Hazardous Location NEMA 7, 9.
Installation and Service Instructions: P/N 8-078-927-05
Parts List: P/N 8-078-917-05
Mounting Requirements: 1-087-3XX-02 Series Hazardous Location Motor Mounted Brake is recommended for mounting to a motor fan guard, or for use with a motor frame adapter. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.

Certified: UL Listed, File E-14893
Series 87,300-02, Class I Group C and D and Class II, Group E, F and G.
CSA Certified, File LR-9584, Class I, Group C and D, and Class II, Group E, F and G.
Outline Drawing for IP 23 \& 55
Hazardous-location brakes are intended essentially for non-cyclic or holding purposes, but may be used for stopping light inertial loads.

X max diameter $1.625 \mathrm{in} . / \mathrm{min} .875 \mathrm{in} .{ }^{ *} \mathrm{~L}$ is the maximum keyway slot.

Dimensional Data/Unit Pricing (Discount Symbol D1)

Model Number	Enclosure	Nominal Static Torque (lb-ft) (Nm)	Dimensions in Inches (Dimensions in Millimeters)					List Price	Weight lbs (kg)
			A	AE	C	$\begin{gathered} \mathrm{SL} \\ \pm .05 " \end{gathered}$	$\begin{aligned} & \hline \mathrm{L}^{* *} \\ & \text { Max. } \end{aligned}$		
1-087-311-02-XXX	IP 23	$\begin{gathered} 10 \\ (14) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	\$4,200.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-314-02-XXX	IP 55							\$5,000.00	
1-087-321-02-XXX	IP 23	$\begin{gathered} 15 \\ (20) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	4,350.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-324-02-XXX	IP 55							5,150.00	
1-087-331-02-XXX	IP 23	$\begin{gathered} 25 \\ (34) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	4,575.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-334-02-XXX	IP 55							5,375.00	
1-087-341-02-XXX	IP 23	$\begin{gathered} 35 \\ (47) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	4,850.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-344-02-XXX	IP 55							5,650.00	
1-087-351-02-XXX	IP 23	$\begin{gathered} 50 \\ (68) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	5,550.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-354-02-XXX	IP 55							6,350.00	
1-087-361-02-XXX	IP 23	$\begin{gathered} 75 \\ (102) \end{gathered}$	$\begin{gathered} 10.34 \\ (262.60) \end{gathered}$	$\begin{gathered} 4.22 \\ (107.19) \end{gathered}$	$\begin{gathered} 3.65 \\ (92.70) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{gathered} 2.89 \\ (73.40) \end{gathered}$	6,550.00	$\begin{gathered} 90 \\ (41) \end{gathered}$
1-087-364-02-XXX	IP 55							7,350.00	
1-087-381-02-XXX	IP 23	$\begin{gathered} 105 \\ (142) \end{gathered}$	$\begin{array}{c\|} \hline 10.84 \\ (275.10) \end{array}$	$\begin{gathered} 4.72 \\ (119.10) \end{gathered}$	$\begin{gathered} 4.11 \\ (104.40) \end{gathered}$	$\begin{gathered} 3.75 \\ (95.30) \end{gathered}$	$\begin{gathered} 3.14 \\ (79.70) \end{gathered}$	8,200.00	$\begin{gathered} 96 \\ (43.5) \end{gathered}$
1-087-384-02-XXX	IP 55							9,000.00	

Side release is also available in a fan guard mount design. Consult Stearns and request drawing no. 1-087-305-2D

Dimensional Data / Unit Pricing (Discount Symbol D1)

Model Number	Enclosure	Nominal Static Torque lb-ft (Nm)	List Price	Dimensions in Inches (Dimensions in Millimeters)					$\begin{aligned} & \text { Wt. } \\ & \text { Lbs } \\ & (\mathrm{kg})^{* *} \end{aligned}$
				A	C	**L	SL	AE	
1-087-315-02-XXX	IP 56	$\begin{gathered} 10 \\ (14) \end{gathered}$	\$7,670	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-325-02-XXX	IP 56	$\begin{gathered} 15 \\ (20) \end{gathered}$	\$7,820	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-335-02-XXX	IP 56	$\begin{gathered} 25 \\ (34) \end{gathered}$	\$8,045	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-345-02-XXX	IP 56	$\begin{gathered} 35 \\ (47) \end{gathered}$	\$8,320	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-355-02-XXX	IP 56	$\begin{aligned} & 50 \\ & (68) \end{aligned}$	\$9,020	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-365-02-XXX	IP 56	$\begin{gathered} 75 \\ (102) \end{gathered}$	\$10,020	12.60	3.65	2.89	3.50	4.22	$\begin{gathered} 91 \\ (41.3) \end{gathered}$
1-087-385-02-XXX	IP 56	$\begin{gathered} 105 \\ (142) \end{gathered}$	\$11,670	13.10	4.11	3.14	3.75	4.72	$\begin{gathered} 97 \\ (44) \end{gathered}$

Static Torque: 10 through $105 \mathrm{lb-ft}$
Enclosure Material: Cast Iron

Release Type: Knob

Enclosure Protection: IP 23 and Hazardous Location NEMA 7 and NEMA 9 Installation and Service Instructions: P/N 8-078-927-03
Parts List: P/N 8-078-917-03

Mounting Requirements:

1-087-3X2-00 Series Hazardous Location Foot Mounted Brake does not require assembly to the motor to complete the hazardous location enclosure.

Hazardous-location brakes are intended essentially for non-cyclic or holding purposes, but may be used for stopping light inertial loads.

- Self-Adjusting Design
- Epoxy Encapsulated Coil Construction, with Class H Insulation
- NC Thermostat
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Maximum Speed: Horizontal 4000 rpm
- Certified: UL Listed, File E-14893 for Class I, Group C and D and Class II, Group F and G. CSA Certified, File LR-9584 for Class I, Group C and D, and Class II, Group E, F and G.
- ABS Type Approval Certified

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$10,15,25,50$	$5 \& 6$	42	20
$35,75,105$	8	48	20

Dimensions for estimating only. For installation purposes request certified prints.

*Keyseats made to ANSI B17.1 standard

Dimensional Data/Unit Pricing (Discount Symbol D1)

Model Number	Nominal Static Torque (lb-ft) (Nm)	List Price	Dimensions in Inches (Dimensions in Millimeters)		Weight (lbs) (kg)
			A	AF	
1-087-312-00-XX	$\begin{gathered} \hline 10 \\ (14) \end{gathered}$	\$4,450.00	$\begin{gathered} 14.66 \\ (372.27) \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \end{gathered}$	$\begin{gathered} 82 \\ (37.2) \\ \hline \end{gathered}$
1-087-322-00-XX	$\begin{gathered} \hline 15 \\ (20) \\ \hline \end{gathered}$	4,600.00	$\begin{gathered} 14.66 \\ (372.27) \\ \hline \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ (37.6) \\ \hline \end{gathered}$
1-087-332-00-XX	$\begin{gathered} \hline 25 \\ (34) \end{gathered}$	4,825.00	$\begin{gathered} \hline 14.66 \\ (372.27) \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \end{gathered}$	$\begin{gathered} 83 \\ (37.6) \end{gathered}$
1-087-342-00-XX	$\begin{gathered} \hline 35 \\ (47) \end{gathered}$	5,100.00	$\begin{gathered} 14.66 \\ (372.27) \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \end{gathered}$	$\begin{gathered} 83 \\ (37.6) \end{gathered}$
1-087-352-00-XX	$\begin{gathered} 50 \\ (68) \end{gathered}$	5,800.00	$\begin{gathered} 14.66 \\ (372.27) \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \end{gathered}$	$\begin{gathered} 84 \\ (38.1) \end{gathered}$
1-087-362-00-XX	$\begin{gathered} \hline 75 \\ (102) \end{gathered}$	6,800.00	$\begin{gathered} 14.66 \\ (372.27) \end{gathered}$	$\begin{gathered} 5.85 \\ (148.59) \end{gathered}$	$\begin{gathered} \hline 85 \\ (38.5) \end{gathered}$
1-087-382-00-XX	$\begin{gathered} \hline 105 \\ (142) \end{gathered}$	8,450.00	$\begin{gathered} 15.66 \\ (397.67) \end{gathered}$	$\begin{gathered} 6.85 \\ (173.99) \\ \hline \end{gathered}$	$\begin{gathered} 92 \\ (41.7) \end{gathered}$

Specifications and Ordering Information

for Series 87,300-00 (1-087-3XX-00) and Series 87,300-02 (1-087-3XX-02)

Engineering Specifications

| Nominal
 Static
 Torque | No. of
 Friction
 Discs | Coil
 Size | (lb-ft)
 (Nm) | Solenoid
 Cycle
 Rate(1) | Thermal
 Capacity(2) |
| :---: | :---: | :---: | :---: | :---: | :---: | Inertia (Wk²)

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to Selection Procedure Section.

Current Ratings (amperes)

	Voltage: 60 Hz							Voltage: 50 Hz		
Size	Current	$\begin{aligned} & 115 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & \hline 200 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 400 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & \hline 460 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 575 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 110 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 220 \\ & \text { VAC } \end{aligned}$	$\begin{array}{\|l\|} \hline 380 \\ \text { VAC } \end{array}$
5	Inrush Holding	$\begin{array}{r} 7.5 \\ .5 \end{array}$	$\begin{array}{r} 4.3 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ .2 \end{array}$	$\begin{array}{r} 2.2 \\ .1 \end{array}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{array}{c\|} \hline 1.5 \\ .09 \end{array}$	$\begin{array}{r} 5.4 \\ .3 \end{array}$	$\begin{gathered} \hline 4.0 \\ .25 \end{gathered}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$
6	Inrush Holding	$\begin{array}{r} 13.0 \\ .6 \end{array}$	$\begin{array}{r} 7.5 \\ \hline .4 \end{array}$	$\begin{array}{r} \hline 6.4 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ \hline .2 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	$\begin{array}{r} \hline 2.6 \\ .1 \end{array}$	$\begin{array}{r} 9.4 \\ .5 \end{array}$	$\begin{array}{r} 5.6 \\ .3 \end{array}$	3.2 .2
8	Inrush Holding	$\begin{array}{r} 17.6 \\ 1.2 \end{array}$	$\begin{array}{r} \hline 10.3 \\ \hline .7 \end{array}$	$\begin{array}{r} \hline 8.8 \\ .6 \end{array}$	$\begin{gathered} 5.0 \\ .3 \end{gathered}$	$\begin{array}{r} 4.2 \\ .3 \end{array}$	$\begin{gathered} \hline 3.5 \\ .24 \end{gathered}$	$\begin{array}{r} 15.4 \\ .1 \end{array}$	7.7 .5	$\begin{array}{r} 4.2 \\ .3 \end{array}$

Motor Frame Adapters

WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the "Selection Procedure" section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application requirements, before use of an adapter is considered.
Consult the factory.

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.
Example of a complete part number: 1-087-341-02-ELC __ Lead wire position (external right)
 460 Vac $1-1 / 8$ bore and $1 / 4 \times 1 / 8$ keyway (does not apply to foot mounted brake) Series -02

Hub Selection

Character	Bore (in.)	Keyway* (in. x in.)
D	$7 / 8$ E	$1-1 / 8 / 16 \times 3 / 32$
F	$1-1 / 4$	$1 / 4 \times 1 / 8$
G	$1 / 3 / 8$	$5 / 16 \times 5 / 82$
H	$1-5 / 8$	$3 / 8 \times 3 / 16$
maximum allowable bore	1.625 in.$$	

*Keyseats made to ANSI B17.1 standard

Standard AC
Voltage Ratings

Character	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
190	50	
H	220	50
L	460	60
M	480	50
N	575	50
O	$110 / 220$	50
P	$115 / 230$	60
Q	$230 / 460$	60
R	$200 / 380$	50
		60

Lead Wire Positions

View facing brake mounting register.

Division I Hazardous Location
Mounting Face: NEMA 324 and 326 TC, TSC, NEMA 364 and 365 TC,TSC, NEMA 404 and 405 TC,
TSC. 12.5" AK, 11.0" AJ
Static Torque: 125 through $330 \mathrm{lb}-\mathrm{ft}$
Enclosure Material: Cast Iron
Release Type: Side lever
Enclosure Protection: IP 23, IP 56
Hazardous location NEMA 7 and NEMA 9
Modification required for vertical mounting.

Unit Pricing (Discount Symbol D1)

1-082-3XX-00 Series Close Coupled Hazardous location NEMA 7, 9

Model Number	Enclosure	Nominal Static Torque lb -ft (Nm)	List Price
1-082-315-00	IP 23	$\begin{gathered} \hline 125 \\ (169) \end{gathered}$	\$17,000.00
1-082-314-00	IP 56		18,200.00
1-082-325-00	IP 23	$\begin{gathered} 175 \\ (237) \end{gathered}$	17,900.00
1-082-324-00	IP 56		19,100.00
1-082-335-00	IP 23	$\begin{aligned} & 230 \\ & (312) \end{aligned}$	18,900.00
1-082-334-00	IP 56		20,100.00
1-082-345-00	IP 23	$\begin{gathered} 330 \\ (447) \end{gathered}$	19,800.00
1-082-344-00	IP 56		21,000.00

1-082-3X4-02 Series Fan Guard Mount ${ }^{1}$ Hazardous location NEMA 7, 9

Model Number	Enclosure	Nominal Static Torque lb-ft $(\mathbf{N m})$	List Price
1-082-314-02	IP 56	$125(169)$	$\$ 22,200.00$
$1-082-324-02$	IP 56	$175(237)$	$23,100.00$
$1-082-334-02$	IP 56	$230(312)$	$24,100.00$
$1-082-344-02$	IP 56	$330(447)$	$25,000.00$

${ }^{1}$ Also, see page 51 for Mining Brakes - MSHA Certified series 1-082-3X4-06

1-082-3XX-00 Series Foot Mounted Hazardous location NEMA 7, 9

Model Number	Enclosure	Nominal Static Torque Ib-ft $(\mathbf{N m})$	List Price
$1-082-316-00$	IP 23	$125(169)$	$\$ 24,300.00$
$1-082-326-00$	IP 23	$175(237)$	$25,000.00$
$1-082-336-00$	IP 23	$230(312)$	$26,000.00$
$1-082-346-00$	IP 23	$330(447)$	$27,000.00$

Motor Frame Adapters

Adapters are available for mounting to 182TC-256TC, 284-286TC, and 444-445TSC motor frames. See Series 82,000 for details

Engineering Specifications

Nominal Static Torque	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate 1	Thermal Capacity (2)	Inertia (Wk ${ }^{\text {2 }}$)
(lb-ft) (Nm)			cycles/min	hp-sec/min (watts)	$\begin{gathered} \mathrm{lb}-\mathrm{ft2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \end{gathered}$
125 (169)	2	9	15	10 (124)	. 228 (95.76)
175 (237)	2	9	15	10 (124)	. 228 (95.76)
230 (312)	3	9	15	10 (124)	. 317 (133.14)
330 (447)	3	K9	13	10 (124)	. 317 (133.14)

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Refer to "Selection Procedure" Section.

Hazardous-location brakes are intended essentially for noncyclic or holding purposes, but may be used for stopping light inertial loads.

Cast Iron Enclosure, Including new IP 55 \& new Fan Guard Mount

- Self-Adjusting Design
- Epoxy Encapsulated Coil Construction, with Class H Insulation
- NC Thermostat
- Spring-Set Electrically Released
- Lead Wire Length: 36 inches
- Certified: UL Listed, File E-14893, CSA File LR-9584 for Class I, Group C and D, and Class II, Group E and F, and G.
- ABS Type Approval Certified

Ordering and Identification Information

Example of a complete part number:
1-082-314-00-FNB —_ Lead wire position (external left)575 Vac
$1-5 / 8$ bore and $3 / 8 \times 3 / 16$ keyway
Series: (Motor mount $=00$)
(New Fan Guard Mount = 02)
Standard AC

Voltage Ratings

Char- acter	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
H	220	50
L	460	50
M	480	60
N	575	50
O	$110 / 220$	60
P	$115 / 230$	60
Q	$230 / 460$	60
R	$190 / 380$	50

Hub Selection

| Character | Bore
 (in.) | Keyway**
 (in. \mathbf{x} in.) |
| :---: | :---: | :---: | :---: |
| A | $1-1 / 8$ | $1 / 4 \times 1 / 8$ |
| C | $1-3 / 8$ | $5 / 16 \times 5 / 32$ |
| D | $1-1 / 2$ | $3 / 8 \times 3 / 16$ |
| F | $1-5 / 8$ | $3 / 8 \times 3 / 16$ |
| H | $1-3 / 4$ | $3 / 8 \times 3 / 16$ |
| J | $1-7 / 8$ | $1 / 2 \times 1 / 4$ |
| $\mathrm{~L}^{*}$ | 2 | $1 / 2 \times 1 / 4$ |
| N | $2-1 / 8$ | $1 / 2 \times 1 / 4$ |
| maximum
 allowable
 bore | 2.125 in.
 $(53.975 \mathrm{~mm})$ | |

*These bores are non-standard.
Add $\$ 600.00$ to list price.
**Keyseats made to ANSI B17.1 standard.

Modifications are available- see SAB Modification Section

Current Ratings (amperes)

82,300 Motor Mounted and Foot Mounted

Coil Size	Voltage: 60 Hz						
	Current	115 VAC	200 VAC	230 VAC	400 VAC	460 VAC	575 VAC
9	Inrush Holding	$\begin{array}{r} 44.0 \\ 1.6 \end{array}$	$\begin{array}{r} 25.4 \\ .9 \end{array}$	$\begin{array}{r} 22.0 \\ .8 \end{array}$	$\begin{array}{r} 12.7 \\ .5 \end{array}$	$\begin{array}{r} 11.1 \\ .4 \end{array}$	$\begin{array}{r} 8.8 \\ .3 \end{array}$
	Voltage: $50 \mathbf{H z}$						
	Current	110 VAC	220 VAC	380 VAC			
	Inrush Holding	$\begin{array}{r} 32.1 \\ 1.2 \end{array}$	$\begin{gathered} 16.0 \\ .6 \end{gathered}$	$\begin{array}{r} 11.1 \\ .4 \end{array}$			
K9	Voltage: 60 Hz						
	Current	115 VAC	200 VAC	230 VAC	400 VAC	460 VAC	575 VAC
	Inrush Holding	$\begin{array}{r} 50.0 \\ 2.2 \end{array}$	$\begin{array}{r} 28.0 \\ 1.3 \end{array}$	$\begin{array}{r} 25.0 \\ 1.1 \end{array}$	$\begin{array}{r} 14.0 \\ .6 \end{array}$	$\begin{array}{r} 12.5 \\ .6 \end{array}$	$\begin{array}{r} 10.0 \\ .4 \end{array}$
	Voltage: 50 Hz						
	Current	110 VAC	220 VAC	380 VAC			
	Inrush Holding	$\begin{array}{r} 36.0 \\ 1.6 \end{array}$	$\begin{array}{r} 24.0 \\ .9 \end{array}$	$\begin{array}{r} 12.5 \\ .6 \end{array}$			

1-082-3XX-00 Series Motor Mounted Brake

Mounting Requirements: 1-082-3XX-00 Series Hazardous Location Motor Mounted Brake is used for mounting close coupled (directly) to the motor end bell. If brake is to be mounted to a motor fan guard, or if a motor frame adapter is incorporated, please contact the factory for information on Series 1-082-3X4-02, as it provides additional bearing support for the longer shaft that is required. The acceptability of the brake and motor combination must be determined by Underwriters Laboratories Inc.
Enclosure Protection: IP 56, and Hazardous Location NEMA 7, 9

Model Number	Torque	C	SL
$1-082-31 \mathrm{X}-00$	$125 \mathrm{lb}-\mathrm{ft}$	2.79	3.03
$1-082-32 \mathrm{X}-00$	$175 \mathrm{lb}-\mathrm{ft}$	(70.87)	(76.96)
$1-082-33 \mathrm{X}-00$	$230 \mathrm{lb}-\mathrm{ft}$	3.29	3.53
$1-082-34 \mathrm{X}-00$	$330 \mathrm{lb}-\mathrm{ft}$	(83.57)	(89.66)

> Above drawing is for motor mounted brake only. For fan guard mounted brake (1-082-3X4-02 series), request Stearns drawing no. 1-082-304-2D.

1-082-3X6-00 Series Foot Mounted Brake

Mounting Requirements: 1-082-3X6-00 Series Hazardous Location Foot Mounted Brake does not require assembly to the motor to complete the hazardous location enclosure.
Enclosure Protection: IP 23 and Hazardous Location NEMA 7, 9

Hazardous-location brakes are intended essentially for non-cyclic or holding purposes, but may be used for stopping light inertial loads.
Dimensions for estimating only. For installation purposes, request certified prints.

*Keyseats made to ANSI B17.1 standard

Static Torque: 1.5 through $25 \mathrm{lb}-\mathrm{ft}$
Enclosure Material: Cast Iron
Release Type: Side Lever, maintained with auto reset
Enclosure Protection: IP 54
Certified: UL Listed, File E 14893 for Class 1, Division 2, Groups A, B, C, D, and Class II, Division 2, Groups F and G
Mounting Requirements: 1-056-8X2 Series Hazardous Location Motor Mounted Brake is recommended for mounting close coupled to the motor end bell. The acceptability of the brake and motor combination must be determined by Underwriters Laboratory.
Universal Mounting: Through $15 \mathrm{lb}-\mathrm{ft}$. 20 and $25 \mathrm{lb}-\mathrm{ft}$. supplied with springs for vertical modification.

Epoxy Encapsulated Coil Construction, with Class H Insulation

NC Thermostat

Maximum speed:
Horizontal 5000 rpm Vertical 3600 rpm
Installation, Service and Parts List: P/N 8-078-905-18
ABS Type Approval Certified
Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$1.5-25$	$4, \mathrm{~K} 4$, $\mathrm{K} 4+, \mathrm{M} 4+$	25	14

Dimensions for estimating only. For installation purposes request certified prints.

Motor Frame Adapters

WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the "Selection Procedure" section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application
requirements, before use of an adapter is considered.

To Adapt to NEMA Frame Size	AK Dim.	Reg. No.	Brake Torque	Adapter Stock Number	Additional Shaft Length Required
	$\begin{gathered} \text { in. } \\ (m m) \end{gathered}$				$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$
$\begin{aligned} & \text { 182TC } \\ & \text { 184TC } \\ & \text { 213TC } \end{aligned}$	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	1.5-6	$\begin{aligned} & 5-55-5041-00 \\ & \text { List \$700 } \end{aligned}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$
$\begin{aligned} & 215 \mathrm{TC} \\ & 254 \mathrm{TC} \\ & 256 \mathrm{TC} \end{aligned}$	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	-9	10-25	$\begin{gathered} \text { 5-55-5043-00 } \\ \text { List } \$ 700 \end{gathered}$	$\begin{gathered} .94 \\ (23.81) \end{gathered}$

Unit Pricing (Discount Symbol B4)

Model Number	Nominal Static Torque (lb-ft) (Nm)	Dimensions in Inches (Dimensions in Millimeters)				Enclosure	List Price	Wt. lbs (kg)
		A	AG	C	G			
1-056-812-00	$\begin{gathered} \hline 3 \\ \text { (4) } \end{gathered}$	$\begin{gathered} \hline 4.7 \\ (119.4) \end{gathered}$	$\begin{array}{\|c\|} \hline .59 \\ (15.0) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.66 \\ (42.2) \end{array}$	IP 54	1,550.00	15
1-056-822-00	$\begin{gathered} \hline 6 \\ \text { (8) } \\ \hline \end{gathered}$	$\begin{gathered} 4.7 \\ (119.4) \end{gathered}$	$\begin{array}{\|c\|} \hline .59 \\ (15.0) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (42.2) \\ \hline \end{gathered}$	IP 54	1,615.00	15
1-056-832-00	$\begin{gathered} 10 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 4.7 \\ (119.4) \end{gathered}$	$\begin{array}{\|c\|} \hline .59 \\ (15.0) \\ \hline \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (42.2) \end{gathered}$	IP 54	1,720.00	17
1-056-842-00	$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 4.7 \\ (119.4) \end{gathered}$	$\begin{array}{\|c\|} \hline .59 \\ (15.0) \\ \hline \end{array}$	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.66 \\ (42.2) \\ \hline \end{array}$	IP 54	1,820.00	17
1-056-852-00	$\begin{gathered} 20 \\ (27) \end{gathered}$	$\begin{gathered} 4.7 \\ (119.4) \end{gathered}$	$\begin{gathered} .59 \\ (15.0) \\ \hline \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (42.2) \\ \hline \end{gathered}$	IP 54	1,905.00	21
1-056-862-00	$\begin{aligned} & \hline 25 \\ & (34) \end{aligned}$	$\begin{gathered} 4.7 \\ (119.4) \end{gathered}$	$\begin{array}{\|c\|} \hline .59 \\ (15.0) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (42.2) \end{gathered}$	IP 54	2,000.00	21

[^6]Engineering Specifications

Nominal Static Torque		Coil Size	Maximum Solenoid Cycle Rate 1 1	Thermal Capacity(2)	Inertia (Wk ${ }^{\text {² }}$)
$\begin{aligned} & \mathrm{lb}-\mathrm{ft} \\ & (\mathrm{Nm}) \end{aligned}$		AC	cycle/min	hp-sec/min (watts)	$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \end{gathered}$
			AC	Horizontal	
$\begin{aligned} & 1.5 \\ & \text { (2) } \end{aligned}$	1	4	7.5	$\begin{gathered} 3.5 \\ (43.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline .008 \\ (3.36) \\ \hline \end{gathered}$
$\begin{gathered} \hline 3 \\ (4) \\ \hline \end{gathered}$	2	4	7.5	$\begin{gathered} 3.5 \\ (43.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline .014 \\ (5.88) \end{gathered}$
$\begin{gathered} \hline 6 \\ \text { (8) } \end{gathered}$	2	4	7.5	$\begin{gathered} 3.5 \\ (43.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline .014 \\ (5.88) \end{gathered}$
$\begin{gathered} \hline 10 \\ (14) \end{gathered}$	2	K4	7.5	$\begin{gathered} \hline 3.5 \\ (43.50) \end{gathered}$	$\begin{gathered} \hline .014 \\ (5.88) \end{gathered}$
$\begin{gathered} \hline 15 \\ (20) \end{gathered}$	2	K4+	7.5	$\begin{gathered} 3.5 \\ (43.50) \end{gathered}$	$\begin{gathered} \hline .014 \\ (5.88) \\ \hline \end{gathered}$
$\begin{gathered} \hline 20 \\ (27) \end{gathered}$	3	K4+	7.5	$\begin{gathered} 3.5 \\ (43.50) \end{gathered}$	$\begin{gathered} \hline .020 \\ (8.40) \\ \hline \end{gathered}$
$\begin{gathered} \hline 25 \\ (34) \\ \hline \end{gathered}$	3	M4+	7.5	$\begin{gathered} 3.5 \\ (43.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline .020 \\ (8.40) \end{gathered}$

Current Ratings (amperes)

Solenoid Coil Size	AC Current	Voltage: 60 Hz						Voltage: $\mathbf{5 0 ~ H z}$		
		115	200	230	400	460	575	110	220	380
		Vac								
4	Inrush	3.6	2.1	1.8	1.1	. 9	. 7	4.1	2.1	. 9
	Holding	. 3	. 2	. 2	. 08	. 08	. 06	. 3	. 2	. 08
K4	Inrush	4.3	2.5	2.2	1.3	1.1	. 9	3.8	1.9	1.1
	Holding	. 3	. 2	. 2	. 1	. 08	. 07	. 4	. 2	. 08
K4+	Inrush	4.6	2.5	2.3	1.2	1.0	. 9	4.9	2.0	1.0
	Holding	. 4	. 2	. 2	. 1	. 1	. 08	. 4	. 2	. 1
M4+	Inrush	4.6	2.5	2.3	1.2	1.0	. 9	4.1	2.0	1.3
	Holding	. 4	2	. 2	1	. 1	. 08	4	2	,

(1) Maximum solenoid cycle rate is based on ambient temperature of $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right.$) with 50% duty cycle. Does relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to Selection Procedure Section

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.
Example of a complete part number: 1-056-832-00-BFF___Lead wire position (internal and external, left and right)

230 Vac
$5 / 8$ bore and $3 / 16 \times 3 / 32$ keyway

Character	Bore (in.)	Keyway** (in. x in.)
A^{*}	$5 / 8$	$1 / 8 \times 1 / 16$
B	$5 / 8$	$3 / 16 \times 3 / 32$
C	$3 / 4$	$3 / 16 \times 3 / 32$
D	$7 / 8$	$3 / 16 \times 3 / 32$
E	$1-1 / 8$	$1 / 4 \times 1 / 8$
$\mathrm{~F}^{*}$	$1-1 / 4$	$1 / 4 \times 1 / 8$
K	$1 / 2$	$1 / 8 \times 1 / 16$
$\mathrm{~L}^{*}$	1	$1 / 4 \times 1 / 8$
$\mathrm{~N}^{*}$	$9 / 16$	$1 / 8 \times 1 / 16$
O^{*}	$11 / 16$	$3 / 16 \times 3 / 32$
P^{*}	$1-1 / 6$	$1 / 4 \times 1 / 8$
R^{*}	$13 / 16$	$3 / 16 \times 3 / 32$
$\mathrm{~S}^{*}$	$15 / 16$	$1 / 4 \times 1 / 8$

Maximum allowable bore 1.25 .
For thru-shaft applications, . 875
is maximum.
*These bores are non-standard. Add $\$ 225.00$ to list price.
*Keyseats made to ANSI B17.1 standard.

Standard AC Voltage Ratings

Character	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
	190	50
H	220	50
L	460	60
380	50	
M	415	50
N	575	60
O	$110 / 220$	50
P	115	60
Q	230	
R	$230 / 460$	60

DC voltages not available.

Space heater not available.

Division 2 Hazardous Location

Mounting Face: NEMA 182TC 184TC, 213TC, 215TC, 254TC, 254UC,

256TC and 256UC
8.5" AK, 7.25" AJ

Static Torque: 6 through $105 \mathrm{lb}-\mathrm{ft}$ Enclosure Material: Cast Iron Release Type: Knob
Enclosure Protection: IP 54 Division 2 Hazardous Duty
Certified: UL Listed, File E-14893.
For Hazardous Location Classification, see Dimensional Data below.
Mounting Requirements: 1-87-8XX Series Hazardous Location Motor Mounted Brake is recommended for mounting close coupled to the motor end bell. The acceptability of the brake and motor combination must be determined by Underwriters Laboratory.
Modification required for vertical above mounting. For vertical below, modification required on $50-105 \mathrm{lb}-\mathrm{ft}$.

Epoxy Encapsulated Coil Construction, with Class H Insulation

NC Thermostat

Maximum speed:
Horizontal 4000 rpm
Vertical 3000 rpm
ABS Type Approval Certified
Installation, Service \& Parts List: P/N 8-078-927-08
Brake set and release times, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$10,15,25,50$	$5 \& 6$	42	20
$35,75,105$	8	48	20

1/8 pipe tap - drain hole for horiz.
\& vertical below mounting

Dimensional Data/Unit Pricing

Model Numbers	Nominal Static Torque	Hazardous Location Classification Division 2		Dimensions in Inches (Dimensions in Millimeters)				Enclosure	List Price	Wt. lbs (kg)	Discount Symbol
	$\begin{aligned} & \mathrm{lb-ft} \\ & (\mathrm{Nm}) \end{aligned}$	Class I Group -	Class II Group -	A	AE	AG	C				
1-087-802-00	$\begin{aligned} & \hline 6 \\ & \text { (8) } \\ & \hline \end{aligned}$		F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	\$2,275.00	$\begin{gathered} 42 \\ (19.1) \\ \hline \end{gathered}$	B2
1-087-802-01	$\begin{gathered} 6 \\ \text { (8) } \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	\$2,275.00	$\begin{gathered} 42 \\ (19.1) \\ \hline \end{gathered}$	B2
1-087-812-00	$\begin{gathered} 10 \\ (14) \end{gathered}$		F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	2,275.00	$\begin{gathered} 42 \\ (19.1) \\ \hline \end{gathered}$	B2
1-087-812-01	$\begin{gathered} 10 \\ (14) \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{array}{r} 1.00 \\ (25.4) \\ \hline \end{array}$	IP 54	2,275.00	$\begin{array}{r} 42 \\ (19.1) \\ \hline \end{array}$	B2
1-087-822-00	$\begin{aligned} & 15 \\ & (20) \\ & \hline \end{aligned}$		F, G	$\begin{gathered} \hline 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	2,325.00	$\begin{gathered} \hline 43 \\ (19.5) \\ \hline \end{gathered}$	B2
1-087-822-01	$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	2,325.00	$\begin{gathered} 43 \\ (19.5) \\ \hline \end{gathered}$	B2
1-087-832-00	$\begin{gathered} 25 \\ \text { (34) } \\ \hline \end{gathered}$		F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	2,400.00	$\begin{gathered} 43 \\ (19.5) \\ \hline \end{gathered}$	B3
1-087-832-01	$\begin{gathered} 25 \\ (34) \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \\ \hline \end{gathered}$	IP 54	2,400.00	$\begin{gathered} 43 \\ (19.5) \\ \hline \end{gathered}$	B3
1-087-842-00	$\begin{gathered} 35 \\ (47) \\ \hline \end{gathered}$		F, G	$\begin{gathered} 7.56 \\ (192.02) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \\ \hline \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{array}{r} 1.00 \\ (25.4) \\ \hline \end{array}$	IP 54	2,550.00	$\begin{gathered} 46 \\ (20.9) \\ \hline \end{gathered}$	B3
1-087-842-01	$\begin{gathered} 35 \\ (47) \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 7.56 \\ (192.02) \end{gathered}$	$\begin{gathered} 1.81 \\ (45.97) \end{gathered}$	$\begin{gathered} .78 \\ (19.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ (25.4) \end{gathered}$	IP 54	2,550.00	$\begin{gathered} 46 \\ (20.9) \end{gathered}$	B3
1-087-852-00	$\begin{gathered} 50 \\ (68) \\ \hline \end{gathered}$		F, G	$\begin{gathered} 8.06 \\ (204.72) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	IP 54	2,850.00	$\begin{gathered} 42 \\ (19.1) \\ \hline \end{gathered}$	B3
1-087-852-01	$\begin{gathered} 50 \\ (68) \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 8.06 \\ (204.72) \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	IP 54	2,850.00	$\begin{gathered} 42 \\ (19.1) \\ \hline \end{gathered}$	B3
1-087-862-00	$\begin{gathered} 75 \\ \text { (102) } \\ \hline \end{gathered}$		F, G	$\begin{gathered} 8.06 \\ (204.72) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	IP 54	3,350.00	$\begin{gathered} 50 \\ (22.7) \\ \hline \end{gathered}$	B3
1-087-862-01	$\begin{gathered} 75 \\ (102) \\ \hline \end{gathered}$	A, B, C, D	F, G	$\begin{gathered} 8.06 \\ (204.72) \\ \hline \end{gathered}$	$\begin{gathered} 2.31 \\ (58.67) \\ \hline \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.50 \\ (38.10) \\ \hline \end{gathered}$	IP 54	3,350.00	$\begin{array}{r} 50 \\ (22.7) \\ \hline \end{array}$	B3
1-087-882-00	$\begin{aligned} & \hline 105 \\ & (142) \\ & \hline \end{aligned}$		F, G	$\begin{gathered} 8.56 \\ (217.42) \\ \hline \end{gathered}$	$\begin{gathered} 2.81 \\ (71.37) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \\ \hline \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \\ \hline \end{gathered}$	IP 54	4,050.00	$\begin{gathered} 50 \\ (22.7) \\ \hline \end{gathered}$	B3
1-087-882-01	$\begin{aligned} & 105 \\ & (142) \end{aligned}$	A, B, C, D	F, G	$\begin{gathered} 8.56 \\ (217.42) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.37) \end{gathered}$	$\begin{gathered} .97 \\ (24.64) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	IP 54	4,050.00	$\begin{gathered} 50 \\ (22.7) \end{gathered}$	B3

Motor Frame Adapters:
WARNING! Before selecting an adapter to mount a brake on a larger motor frame, the torque and thermal capacity required by the application should be determined as shown in the "Selection Procedure" section. A larger motor may indicate a requirement for greater thermal capacity than the brake is designed for. The brake selection must be matched to the motor and application requirements, before use of an adapter is considered.

To Adapt to NEMA Frame Size	AK Dim.	Reg. No.	Adapter Stock Number	Additional Shaft Length Required in. (mm)
	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$			
$\begin{gathered} 56 \mathrm{C}, 143 \mathrm{TC} \\ \text { or } 145 \mathrm{TC} \end{gathered}$	$\begin{gathered} 4.50 \\ (114.30) \end{gathered}$	-05	Brake endplate is modified for 4.50 in. AK. An adapter is not furnished. Add: $\$ 340.00$	$\overline{(-)}$
			5-55-7043-00	$\begin{gathered} .56 \\ (14.22) \end{gathered}$
$\begin{gathered} 284 \mathrm{TC} \text { or } \\ 286 \mathrm{TC} \end{gathered}$	$\begin{gathered} \hline 10.50 \\ (266.70) \\ \hline \end{gathered}$	-11	5-55-7055-00	$\begin{gathered} .81 \\ (20.64) \\ \hline \end{gathered}$
$\begin{aligned} & \text { 324TC, } \\ & \text { 326TC, } \\ & \text { 364TC, } \\ & \text { 365TC, } \\ & \text { 444TC or } \\ & 405 \mathrm{TC} \end{aligned}$	$\begin{gathered} 12.50 \\ (317.50) \end{gathered}$	-13	5-55-7046-00	$\begin{gathered} .88 \\ (22.22) \end{gathered}$

For adapter dimensions, see Technical Data.

Current Ratings (amperes)

Coil Size	AC Current	Voltage: 60 Hz						Voltage: 50 Hz		
		115	200	230	400	460	575	110	220	380
5	inrush holding	$\begin{array}{r} 7.5 \\ .5 \end{array}$	$\begin{array}{r} 4.3 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ .2 \end{array}$	$\begin{array}{r} 2.2 \\ .1 \end{array}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{gathered} 1.5 \\ .09 \end{gathered}$	$\begin{array}{r} 5.4 \\ .3 \end{array}$	$\begin{gathered} 4.0 \\ .25 \end{gathered}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$
6	inrush holding	$\begin{array}{r} 13.0 \\ .6 \end{array}$	$\begin{array}{r} 7.5 \\ .4 \end{array}$	$\begin{array}{r} 6.5 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ \hline .2 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	2.6	$\begin{array}{r} 9.4 \\ .5 \end{array}$	$\begin{array}{r} 5.6 \\ .3 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$
8	inrush holding	$\begin{array}{r} 17.6 \\ 1.2 \end{array}$	$\begin{array}{r} 10.3 \\ .7 \end{array}$	$\begin{array}{r} 8.8 \\ .6 \end{array}$	$\begin{array}{r} 5.0 \\ .3 \end{array}$	$\begin{array}{r} 4.2 \\ .3 \end{array}$	$\begin{array}{r} 3.5 \\ .3 \end{array}$	$\begin{array}{r} 15.4 \\ .1 \end{array}$	$\begin{array}{r} 7.7 \\ .5 \end{array}$	4.2 .3

Engineering Specifications

Nominal Static Torque	No. of Friction Discs	Coil Size	Maximum Solenoid Cycle Rate ${ }^{1}$	Thermal Capacity(2)	Inertia ($\mathbf{W k}^{\mathbf{2}} \mathbf{)}$
$\begin{aligned} & \hline \mathrm{Ib-ft} \\ & (\mathrm{Nm}) \end{aligned}$			cycles/ min	$\begin{gathered} \text { hp-sec/min } \\ \text { (watts) } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Ib}-\mathrm{ft} .^{2} \\ \left(\mathrm{kgm}^{2} \times 10-4\right) \\ \hline \end{array}$
$\begin{gathered} 6 \\ \text { (8) } \\ \hline \end{gathered}$	1	5	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$
$\begin{gathered} 10 \\ (14) \\ \hline \end{gathered}$	1	5	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$
$\begin{gathered} 15 \\ (20) \end{gathered}$	1	6	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .048 \\ (20.34) \end{gathered}$
$\begin{array}{r} 25 \\ (34) \\ \hline \end{array}$	1	6	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .048 \\ (20.34) \\ \hline \end{gathered}$
$\begin{gathered} \hline 35 \\ (47) \end{gathered}$	1	8	4	$\begin{gathered} \hline 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .048 \\ (20.34) \end{gathered}$
$\begin{gathered} 50 \\ (68) \\ \hline \end{gathered}$	2	6	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .089 \\ (37.40) \\ \hline \end{gathered}$
$\begin{gathered} 75 \\ \text { (102) } \\ \hline \end{gathered}$	2	8	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .089 \\ (37.40) \\ \hline \end{gathered}$
$\begin{aligned} & 105 \\ & (142) \end{aligned}$	3	8	4	$\begin{gathered} 14 \\ (174) \\ \hline \end{gathered}$	$\begin{gathered} .129 \\ (54.45) \\ \hline \end{gathered}$

(1) Maximum solenoid cycle rate is based on ambient temperature of $104^{\circ} \mathrm{F}$ $\left(40^{\circ} \mathrm{C}\right.$) with 50% duty cycle. Does relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $104^{\circ}\left(40^{\circ} \mathrm{C}\right)$, stop time of ne second or less, with no heat absorbed from motor. Derate thermal capacity by 25% for vertical mounting. Refer to Selection Procedure Section.

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.

Example of a complete part number:
1-087-832-01-ELF __ Lead wire position (internal and

Hub Selection

Character	Bore (in.)	Keyway** (in. \mathbf{x} in.)
A^{*}	$5 / 8$	$1 / 8 \times 1 / 16$
$\mathrm{~B}^{*}$	$5 / 8$	$3 / 16 \times 3 / 32$
C^{*}	$3 / 4$	$3 / 16 \times 3 / 32$
D	$7 / 8$	$3 / 16 \times 3 / 32$
E	$1-1 / 8$	$1 / 4 \times 1 / 8$
F	$1-1 / 4$	$1 / 4 \times 1 / 8$
G	$1-3 / 8$	$5 / 16 \times 5 / 32$
H	$1-5 / 8$	$3 / 8 \times 3 / 16$
I^{*}	$1-1 / 4$	$3 / 8 \times 3 / 16$
$\mathrm{~K}^{*}$	$1 / 2$	$1 / 8 \times 1 / 16$
$\mathrm{~L}^{*}$	1	$1 / 4 \times 1 / 8$
M^{*}	$1-1 / 2$	$3 / 8 \times 3 / 16$
$\mathrm{~N}^{*}$	$9 / 16$	$1 / 8 \times 1 / 16$
O^{*}	$11 / 16$	$3 / 16 \times 3 / 32$
P^{*}	$1-1 / 16$	$1 / 4 \times 1 / 8$
Q^{*}	$1-7 / 16$	$3 / 8 \times 3 / 16$
R^{*}	$13 / 16$	$3 / 16 \times 3 / 32$
$\mathrm{~S}^{*}$	$15 / 16$	$1 / 4 \times 1 / 8$
$\mathrm{~T}^{*}$	$1-3 / 16$	$1 / 4 \times 1 / 8$
U^{*}	$1-5 / 16$	$5 / 16 \times 5 / 32$
Z^{*}	.600	pilot bore

Maximum allowable bore 1.625.
*These bores are non-standard.
Add $\$ 250.00$ to list price.
**Keyseats made to ANSI B17.1 standard.

Standard AC Voltage Ratings
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Character } & \text { Voltage } & \mathrm{Hz} \\
\hline \text { B } & 115 & 60 \\
\hline \text { D } & 110 & 50 \\
\hline \text { E } & 200 & 60 \\
\hline \text { F } & \begin{array}{c}230 \\
190\end{array} & \begin{array}{c}60 \\
50\end{array} \\
\hline \text { H } & 220 & 50 \\
\hline \text { L } & \begin{array}{c}460 \\
380\end{array} & \begin{array}{c}60 \\
50\end{array}
$$

\hline M \& 415 \& 50

\hline N \& 575 \& 60

\hline O \& 110 / 220 \& 50

\hline P \& 115 / 230 \& 60

\hline Q \& 230 / 460

230\end{array}\right]\)\begin{tabular}{c}
60

50

\hline R

\hline $200 / 400$

60

\hline
\end{tabular}

Modifications are available- see SAB Modification Section

Optional Space Heater for Class II Brakes only
4.5" AK, 5.88" AJ

Static Torque: 1.5 through $25 \mathrm{lb}-\mathrm{ft}$
Enclosure Material: IP 23, 54 \& 55 Die Cast Aluminum; IP 56 Stainless Steel
Release Type: Knob, Maintained with automatic reset
Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA Type 2 \& 4 respectively).

IP 55 \& 56 (formerly referred to by Stearns as NEMA Type 4X BISSC Certified \& Type 4X stainless steel enclosure, respectively).

- ABS Type Approval Certified
- Spring-Set Electrically Released
- Adjustable Torque
- Manual Release Knob, Maintained with Automatic Reset
- Manual Wear Adjustment
Note: 56,700 Series mounts between
C-Face motor and reducer. Do not apply overhung
load to brake output shaft.
Installation and Service:
P/N 8-078-905-67
Parts List: P/N 8-078-906-07
Modifications: Pages 54-63
Universal Mounting: Through 15 lb -ft.
20 and 25 lb -ft. supplied with springs for vertical modification.
Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101)

Static Torque Ib-ft	Coil Size	T1	T2
$1 \frac{1}{2}-25$	$4, \mathrm{~K} 4, \mathrm{~K} 4+, \mathrm{M} 4+$	25	14

 Dimensions for estimating only. For installation purposes request certified prints.

Dimensions /Unit Pricing (Discount Symbol E3)

NominalStaticTorque$(\mathrm{lb}-\mathrm{ft})(\mathrm{Nm})$	Enclosure	Type	Basic Model Number and List Price		Dimensions in Inches (mm)			$\begin{aligned} & \text { Wt. } \\ & \text { Ibs } \\ & \text { (kg) } \end{aligned}$
					A	J	L	
$\begin{aligned} & 1.5 \\ & \text { (2) } \end{aligned}$	IP 23	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-701-0 x \\ 1-056-705-0 X \\ \hline \end{array}$	$\begin{aligned} & \$ 480.00 \\ & \$ 780.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.91 \\ (124.7) \\ \hline \end{array}$	$\begin{gathered} 3.81 \\ (96.8) \\ \hline \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ (5.4) \\ \hline \end{array}$
	IP 54	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-702-0 x \\ 1-056-706-0 X \\ \hline \end{array}$	$\begin{aligned} & \$ 615.00 \\ & \$ 915.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.94 \\ (125.5) \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{c\|} \hline 13 \\ (5.9) \\ \hline \end{array}$
	IP 55	$\begin{aligned} & \hline \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { 1-056-704-0X } \\ & \text { 1-056-708-0X } \end{aligned}$	$\begin{aligned} & \$ 690.00 \\ & \$ 990.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.94 \\ (125.5) \\ \hline \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ (5.9) \end{array}$
$\begin{gathered} 3 \\ (4) \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 1-056-711-0X } \\ & \text { 1-056-715-0X } \end{aligned}$	$\begin{aligned} & \$ 500.00 \\ & \$ 800.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.91 \\ (124.7) \\ \hline \end{array}$	$\begin{gathered} 3.81 \\ (96.8) \\ \hline \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ (5.4) \end{array}$
	IP 54	AC	$\begin{aligned} & \text { 1-056-712-0X } \\ & \text { 1-056-716-0X } \end{aligned}$	$\begin{aligned} & \$ 635.00 \\ & \$ 935.00 \end{aligned}$	$\begin{gathered} 4.94 \\ (125.5) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ (5.9) \end{array}$
	IP 55	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-714-0 X \\ 1-056-718-0 X \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \$ 710.00 \\ \$ 1,010.00 \end{array}$	$\begin{gathered} 4.94 \\ (125.5) \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ (5.9) \\ \hline \end{array}$
	IP 56	AC	1-056-71S-0X	\$2,474.00	$\begin{gathered} 4.94 \\ (125.5) \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.53 \\ (38.9) \end{gathered}$	$\begin{gathered} 22 \\ (10) \end{gathered}$
$\begin{gathered} 6 \\ (8) \end{gathered}$	IP 23	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-721-0 X \\ 1-056-725-0 x \end{array}$	$\begin{aligned} & \$ 565.00 \\ & \$ 865.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.91 \\ (124.7) \end{array}$	$\begin{gathered} \hline 3.81 \\ (96.8) \end{gathered}$	1.53 (38.9)	$\begin{gathered} \hline 12 \\ (5.4) \end{gathered}$
	IP 54	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { 1-056-722-0X } \\ & 1-056-726-0 X \end{aligned}$	$\begin{array}{\|c\|} \hline \$ 700.00 \\ \$ 1,000.00 \end{array}$	$\begin{gathered} 4.94 \\ (125.5) \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.53 \\ (38.9) \end{gathered}$	$\begin{array}{c\|} \hline 13 \\ (5.9) \end{array}$
	IP 55	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-724-0 x \\ 1-056-728-0 X \\ \hline \end{array}$	$\begin{array}{c\|} \hline \$ 775.00 \\ \$ 1,075.00 \end{array}$	$\begin{array}{\|c\|} \hline 4.94 \\ (125.5) \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.53 \\ (38.9) \end{gathered}$	$\begin{array}{\|c\|} \hline 13 \\ (5.9) \end{array}$
	IP 56	AC	1-056-72S-0X	\$2,539.00	$\begin{gathered} 4.94 \\ (125.5) \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.53 \\ (38.9) \end{gathered}$	$\begin{gathered} 22 \\ (10) \end{gathered}$
$\begin{gathered} 10 \\ (14) \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 1-056-731-0 x \\ & 1-056-735-0 x \end{aligned}$	$\begin{aligned} & \$ 665.00 \\ & \$ 965.00 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.91 \\ (124.7) \end{array}$	$\begin{gathered} \hline 3.81 \\ (96.8) \end{gathered}$	$\begin{aligned} & \hline 1.53 \\ & (38.9) \end{aligned}$	$\begin{gathered} \hline 12 \\ (5.4) \end{gathered}$
	IP 54	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-732-0 x \\ 1-056-736-0 x \end{array}$	$\begin{array}{\|c} \$ 805.00 \\ \$ 1,105.00 \end{array}$	$\begin{array}{\|c\|} \hline 4.94 \\ (125.5) \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ (5.9) \end{array}$
	IP 55	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \text { 1-056-734-0x } \\ 1-056-738-0 X \end{array}$	$\begin{array}{c\|} \hline \$ 880.00 \\ \$ 1,180.00 \end{array}$	$\begin{array}{c\|} \hline 4.94 \\ (125.5) \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{array}{c\|} \hline 13 \\ (5.9) \end{array}$
	IP 56	AC	1-056-73S-0X	2,639.00	$\begin{array}{\|c\|} \hline 4.94 \\ (125.5) \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.53 \\ (38.9) \end{gathered}$	$\begin{gathered} 22 \\ (10) \end{gathered}$

Dimensions /Unit Pricing (Discount Symbol E3)

Nominal Static Torque (lb-ft) (Nm)	Enclosure	Type	Basic Model Number and List Price		Dimensions in Inches (mm)			$\begin{aligned} & \text { Wt. } \\ & \text { lbs } \\ & \text { (kg) } \end{aligned}$
					A	J	L	
$\begin{gathered} 15 \\ (20) \end{gathered}$	IP 23	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-056-741-0X } \\ \text { 1-056-745-0X } \\ \hline \end{array}$	$\begin{array}{\|c} \$ 765.00 \\ \$ 1,065.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.91 \\ (124.7) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3.81 \\ (96.8) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1.53 \\ (38.9) \\ \hline \end{array}$	$\begin{gathered} 12 \\ (5.4) \\ \hline \end{gathered}$
	IP 54	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-056-742-0X } \\ 1-056-746-0 X \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \$ 905.00 \\ \$ 1,205.00 \\ \hline \end{array}$	$\begin{gathered} \hline 4.94 \\ (125.5) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{gathered} 1.08 \\ (27.4) \end{gathered}$	$\begin{gathered} 13 \\ (5.9) \end{gathered}$
	IP 55	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1-056-744-0X } \\ \text { 1-056-748-0X } \\ \hline \end{array}$	$\begin{gathered} \$ 980.00 \\ \$ 1,280.00 \end{gathered}$	$\begin{gathered} \hline 4.94 \\ (125.5) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3.88 \\ (98.6) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1.08 \\ (27.4) \\ \hline \end{array}$	$\begin{gathered} 13 \\ (5.9) \\ \hline \end{gathered}$
	IP 56	AC	1-056-74S-0X	2,739.00	$\begin{array}{c\|c} \hline 4.94 \\ (125.5) \\ \hline \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.53 \\ (38.9) \end{array}$	$\begin{gathered} \hline 22 \\ (10) \end{gathered}$
$\begin{gathered} 20 \\ (27) \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-751-07 \\ 1-056-755-07 \end{array}$	$\begin{gathered} \$ 855.00 \\ \$ 1,155.00 \end{gathered}$	$\begin{gathered} 5.36 \\ (136.1) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 3.81 \\ (96.8) \end{array}$	$\begin{array}{c\|} \hline 1.08 \\ \text { (27.4) } \end{array}$	$\begin{gathered} \hline 12 \\ (5.4) \end{gathered}$
	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-752-07 \\ 1-056-756-07 \\ \hline \end{array}$	$\begin{gathered} \$ 990.00 \\ \$ 1,290.00 \end{gathered}$	$\begin{array}{\|c\|} \hline 5.39 \\ (136.9) \\ \hline \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \end{gathered}$	$\begin{gathered} 1.08 \\ (27.4) \end{gathered}$	$\begin{gathered} 14 \\ (6.3) \end{gathered}$
	IP 55	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-754-07 \\ 1-056-758-07 \end{array}$	$\begin{aligned} & \$ 1,065.00 \\ & \$ 1,365.00 \end{aligned}$	$\begin{gathered} 5.39 \\ (136.9) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.08 \\ \text { (27.4) } \\ \hline \end{array}$	$\begin{gathered} 14 \\ (6.3) \\ \hline \end{gathered}$
	IP 56	AC	1-056-75S-0X	2,824.00	$\begin{gathered} \hline 5.39 \\ (136.9) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.88 \\ (98.6) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.08 \\ (27.4) \\ \hline \end{array}$	$\begin{gathered} \hline 22 \\ (10) \end{gathered}$
$\begin{gathered} 25 \\ (34) \end{gathered}$	IP 23	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-761-07 \\ 1-056-765-07 \\ \hline \end{array}$	$\begin{gathered} \$ 950.00 \\ \$ 1,250.00 \end{gathered}$	$\begin{gathered} \hline 5.36 \\ (136.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.81 \\ (96.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (27.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 \\ (5.9) \end{gathered}$
	IP 54	$\begin{aligned} & \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-762-07 \\ 1-056-766-07 \\ \hline \end{array}$	$\begin{aligned} & \$ 1,085.00 \\ & \$ 1,385.00 \end{aligned}$	$\begin{gathered} 5.39 \\ (136.9) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.08 \\ \text { (27.4) } \\ \hline \end{array}$	$\begin{gathered} 14 \\ (6.3) \\ \hline \end{gathered}$
	IP 55	$\begin{aligned} & \hline \mathrm{AC} \\ & \mathrm{DC} \end{aligned}$	$\begin{array}{\|l\|} \hline 1-056-764-07 \\ 1-056-768-07 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \$ 1,160.00 \\ \$ 1,460.00 \\ \hline \end{array}$	$\begin{gathered} 5.39 \\ (136.9) \\ \hline \end{gathered}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.08 \\ (27.4) \\ \hline \end{array}$	$\begin{gathered} 14 \\ \text { (6.3) } \\ \hline \end{gathered}$
	IP 56	AC	1-056-76S-0X	2,919.00	$\begin{array}{c\|c} \hline 5.39 \\ (136.9) \\ \hline \end{array}$	$\begin{gathered} 3.88 \\ (98.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (27.4) \end{gathered}$	$\begin{gathered} \hline 22 \\ (10) \end{gathered}$

[^7]
Engineering Specifications

Nominal Static Torque	No. of Friction Discs	CoilSize		Maximum Solenoid Cycle Rate ${ }^{1}$		Thermal Capacity (2)		Inertia ($\mathbf{W k}^{\mathbf{2}} \mathbf{)}$
$\begin{aligned} & \text { lb-ft } \\ & (\mathrm{Nm}) \end{aligned}$		AC	DC	cycles/min		hp-sec/min (watts)		$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10^{-4}\right) \end{gathered}$
				AC	DC	Horizontal	Vertical	
$\begin{aligned} & 1.5 \\ & (2) \end{aligned}$	1	4	4+	36	20	$\begin{gathered} 9 \\ (112) \end{gathered}$	$\begin{aligned} & \hline 6.5 \\ & (80) \end{aligned}$	$\begin{gathered} .008 \\ (3.36) \end{gathered}$
$\begin{gathered} \hline 3 \\ (4) \\ \hline \end{gathered}$	1	4	4+	36	20	$\begin{gathered} 9 \\ (112) \end{gathered}$	$\begin{aligned} & 6.5 \\ & (80) \\ & \hline \end{aligned}$	$\begin{gathered} .008 \\ (3.36) \\ \hline \end{gathered}$
$\begin{aligned} & 6 \\ & \hline 6 \\ & \text { (8) } \end{aligned}$	1	K4	K4-	36	20	$\begin{gathered} 9 \\ (112) \end{gathered}$	$\begin{aligned} & \hline 6.5 \\ & (80) \end{aligned}$	$\begin{gathered} .008 \\ (3.36) \end{gathered}$
$\begin{gathered} 10 \\ 10 \\ (14) \end{gathered}$	2	K4	K4+	36	20	$\begin{gathered} 9 \\ \hline(112) \end{gathered}$	$\begin{aligned} & 6.5 \\ & (80) \end{aligned}$	$\begin{gathered} .014 \\ \hline(5.88) \end{gathered}$
$\begin{gathered} 15 \\ (20) \end{gathered}$	2	K4+	M4+	36	20	$\begin{gathered} 9 \\ (112) \end{gathered}$	$\begin{aligned} & 6.5 \\ & (80) \end{aligned}$	$\begin{gathered} .014 \\ (5.88) \end{gathered}$
$\begin{gathered} 20 \\ (27) \\ \hline \end{gathered}$	3	K4+	M4+	36	20	$\begin{gathered} 9 \\ (112) \\ \hline \end{gathered}$	$\begin{aligned} & 6.5 \\ & (80) \\ & \hline \end{aligned}$	$\begin{array}{r} .020 \\ \text { (8.40) } \\ \hline \end{array}$
$\begin{gathered} 25 \\ (34) \\ \hline \end{gathered}$	3	M4+	P4+	36	20	$\begin{gathered} 9 \\ (112) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 6.5 \\ (80) \\ \hline \end{array}$	$\begin{gathered} \hline .020 \\ (8.40) \\ \hline \end{gathered}$

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Refer to Selection Procedure Section.

Current Ratings (amperes)

Solenoid Coil Size	AC Current	Voltage: 60 Hz						Voltage: 50 Hz			Voltage: DC			
		115	200	230	400	460	575	110	220	380	24	95	115	230
4	inrush holding	$\begin{array}{r} 3.6 \\ .3 \end{array}$	$\begin{array}{r} 2.1 \\ .2 \end{array}$	$\begin{array}{r} 1.8 \\ .2 \end{array}$	$\begin{gathered} 1.1 \\ .08 \end{gathered}$	$\begin{aligned} & \hline .9 \\ & .08 \end{aligned}$	$\begin{aligned} & \hline .7 \\ & .06 \end{aligned}$	$\begin{array}{r} 4.1 \\ .3 \end{array}$	$\begin{array}{r} 2.1 \\ .2 \end{array}$	$\begin{aligned} & .9 \\ & .08 \end{aligned}$	$\begin{array}{r} 13.3 \\ .3 \end{array}$	$\begin{array}{r} 3.6 \\ .1 \end{array}$	$\begin{gathered} \hline 2.8 \\ .05 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ .03 \end{gathered}$
4+	inrush holding	-	-	-	-	-	-	-	-	-	$\begin{array}{r} 12.0 \\ .4 \end{array}$	$\begin{array}{r} 4.7 \\ .1 \end{array}$	$\begin{gathered} \hline 3.7 \\ .08 \end{gathered}$	$\begin{gathered} 2.0 \\ .04 \end{gathered}$
K4	inrush holding	$\begin{array}{r} 4.3 \\ .3 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ .2 \end{array}$	$\begin{array}{r} 2.2 \\ .2 \end{array}$	$\begin{array}{r} 1.3 \\ .1 \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ .08 \end{gathered}$	$\begin{aligned} & .9 \\ & .07 \end{aligned}$	$\begin{array}{r} 3.8 \\ .4 \\ \hline \end{array}$	$\begin{array}{r} 1.9 \\ .2 \end{array}$	$\begin{gathered} 1.1 \\ .08 \end{gathered}$	$\begin{array}{r} 17.5 \\ \hline .4 \end{array}$	$\begin{array}{r} 4.7 \\ .1 \end{array}$	$\begin{gathered} \hline 3.7 \\ .08 \end{gathered}$	$\begin{gathered} 2.0 \\ .04 \end{gathered}$
K4+	inrush holding	$\begin{array}{r} 4.6 \\ \hline .4 \end{array}$	$\begin{array}{r} 2.5 \\ .2 \\ \hline \end{array}$	$\begin{array}{r} 2.3 \\ .2 \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ .1 \\ \hline \end{array}$	$\begin{array}{r} 1.0 \\ .1 \\ \hline \end{array}$	$\begin{aligned} & \hline .9 \\ & .08 \end{aligned}$	$\begin{array}{r} 4.9 \\ \hline .4 \end{array}$	$\begin{array}{r} 2.0 \\ .2 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.0 \\ .1 \end{array}$	$\begin{array}{r} 20.5 \\ .5 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ .1 \end{array}$	$\begin{gathered} \hline 5.5 \\ .08 \end{gathered}$	$\begin{gathered} \hline 2.0 \\ .04 \end{gathered}$
M4	inrush holding	$\begin{array}{r} 3.0 \\ .6 \end{array}$	$\begin{array}{r} 1.7 \\ .3 \end{array}$	$\begin{array}{r} 1.5 \\ .3 \\ \hline \end{array}$	$\begin{aligned} & .9 \\ & . \\ & \hline \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \end{aligned}$	$\begin{array}{r} .6 \\ . \\ \hline \end{array}$	-	-	$\begin{aligned} & .8 \\ & .1 \end{aligned}$	-	-	-	-
M4+	inrush holding	$\begin{array}{r} 4.6 \\ \hline .4 \end{array}$	$\begin{array}{r} 2.5 \\ .2 \\ \hline \end{array}$	$\begin{array}{r} 2.3 \\ .2 \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ .1 \end{array}$	$\begin{array}{r} 1.0 \\ .1 \\ \hline \end{array}$	$\begin{aligned} & \hline .9 \\ & .08 \end{aligned}$	$\begin{array}{r} 4.1 \\ .4 \end{array}$	$\begin{array}{r} 2.0 \\ .2 \end{array}$	$\begin{array}{r} 1.3 \\ .1 \\ \hline \end{array}$	$\begin{array}{r} 30.3 \\ .5 \end{array}$	$\begin{array}{r} 7.9 \\ .1 \end{array}$	$\begin{gathered} 5.5 \\ .08 \end{gathered}$	$\begin{gathered} 2.0 \\ .04 \end{gathered}$
P4+	inrush holding	-	-	-	-	-	-	-	-	-	$\begin{array}{r} 30.3 \\ .5 \end{array}$	$\begin{array}{r} 11.3 \\ .1 \end{array}$	$\begin{gathered} 8.4 \\ .08 \end{gathered}$	$\begin{gathered} 3.0 \\ .04 \end{gathered}$

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.
Example of a complete part number:
1-056-731-05-_FF __ Lead wire position (internal and external, left and right)

Hub Bore, Shaft and Keyway Sizes

9th Digit of Model No.	Bore Dia. (X)	Keyway**	Shaft Dia. (U)	Keyway**
5	.625	$.19 \times .09$.625	$.19 \times .09$
7	.875	$.19 \times .09$.875	$.19 \times .09$
8^{*}	.875 with sleeve to convert to 625	$.19 \times .09$.625 with sleeve to convert to 875	$.19 \times .09$

*One sleeve provided in each brake.
**Keyseats made to ANSI B17.1 standard.

Standard AC
Voltage Ratings

Character	Voltage	$\mathbf{H z}$
B	115	60
D	110	50
E	200	60
F	230	60
H	220	50
L	460	60
M	480	50
N	575	50
O	$110 / 220$	50
P	$115 / 208$	
230	60	
Q	2308	$230 / 460$
R	$200 / 380$	50

Direct Current

Character	Voltage
T	12
U	24
V	36
W	48
X	95
Y	115
Z	230

Consult factory if other DC voltage is needed

Mounting Face: NEMA 182TC 184TC,
213TC, 215TC, 254TC, 254UC, 256TC and 256UC Double C-Face Coupler

8.5" AK, 7.25" AJ

Static Torque: 6 through $105 \mathrm{lb}-\mathrm{ft}$
Enclosure Material:
Aluminum Housing, Cast Iron Endplate
Release Type: Side Lever, Maintained with automatic reset
Enclosure Protection: IP 23,54 \& 55 (formerly referred to by Stearns as NEMA 2, 4 \& 4X BISSC Certified, respectively).
Installation and Service Instructions:
P/N 8-078-927-27 Rev. B \& C
Parts List: P/N 8-078-917-57 Rev. B
P/N 8-078-917-67 Rev. C
Modifications: Pages 54-63

Note: 87,700 Series mounts between C-Face motor and reducer. Do not apply overhung load to brake output shaft.
Modification required for vertical above mounting. For vertical below, modification required on $50-105 \mathrm{lb}-\mathrm{ft}$. See SAB Modifications for list price adders.

- ABS Type Approval Certified
- Spring-Set Electrically Released
- Self-Adjusting Design
- Maximum Speed: Horizontal 4000 rpm Vertical 3600 rpm
- Certified: CSA File LR-6254

Dimensional Data/Unit Pricing (Discount Symbol E2)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)				Wt. Ibs $(\mathrm{kg})^{* *}$
		AC	AC List Price*	DC	DC List Price*	A	AE	AG	C	
$\begin{gathered} 10 \\ (14) \end{gathered}$	IP 23	1-087-711-0X	\$2,375.00	1-087-715-0X	\$2,945.00	$\begin{gathered} 8.38 \\ (212.72) \end{gathered}$	$\begin{gathered} 2.12 \\ (53.93) \end{gathered}$	$\begin{gathered} .19 \\ (4.83) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} 66 \\ (30.0) \end{gathered}$
	IP 54	1-087-712-0X	2,925.00	1-087-716-0X	3,495.00					
	IP 55	1-087-712-BX	3,180.00	1-087-716-BX	3,750.00					
$\begin{gathered} 15 \\ (20) \end{gathered}$	IP 23	1-087-721-0X	2,375.00	1-087-725-0X	2,945.00	$\begin{gathered} 8.38 \\ (212.72) \end{gathered}$	$\begin{gathered} 2.12 \\ (53.93) \end{gathered}$	$\begin{gathered} .19 \\ (4.83) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} 66 \\ (30.0) \end{gathered}$
	IP 54	1-087-722-0X	2,975.00	1-087-726-0X	3,545.00					
	IP 55	1-087-722-BX	3,230.00	1-087-726-BX	3,800.00					
$\begin{gathered} 25 \\ (34) \end{gathered}$	IP 23	1-087-731-0X	2,450.00	1-087-735-0X	3,020.00	$\begin{gathered} 8.38 \\ (212.72) \end{gathered}$	$\begin{gathered} 2.12 \\ (53.93) \end{gathered}$	$\begin{gathered} .19 \\ (4.83) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} 66 \\ (30.0) \end{gathered}$
	IP 54	1-087-732-0X	3,050.00	1-087-736-0X	3,620.00					
	IP 55	1-087-732-BX	3,305.00	1-087-736-BX	3,875.00					
$\begin{gathered} 35 \\ (47) \end{gathered}$	IP 23	1-087-741-0X	2,600.00	1-087-745-0X	3,170.00	$\begin{gathered} 8.38 \\ (212.72) \end{gathered}$	$\begin{gathered} 2.12 \\ (53.93) \end{gathered}$	$\begin{gathered} .19 \\ (4.83) \end{gathered}$	$\begin{gathered} 2.81 \\ (71.44) \end{gathered}$	$\begin{gathered} 66 \\ (30.0) \end{gathered}$
	IP 54	1-087-742-0X	3,200.00	1-087-746-0X	3,970.00					
	IP 55	1-087-742-BX	3,455.00	1-087-746-BX	4,025.00					
$\begin{gathered} 50 \\ (68) \end{gathered}$	IP 23	1-087-751-0X	2,750.00	1-087-755-0X	3,320.00	$\begin{gathered} 8.88 \\ (225.42) \end{gathered}$	$\begin{gathered} 2.62 \\ (66.68) \end{gathered}$	$\begin{gathered} .44 \\ (11.18) \end{gathered}$	$\begin{gathered} 3.31 \\ (84.14) \end{gathered}$	$\begin{gathered} 73 \\ (33.0) \end{gathered}$
	IP 54	1-087-752-0X	3,350.00	1-087-756-0X	3,920.00					
	IP 55	1-087-752-BX	3,605.00	1-087-756-BX	4,125.00					
$\begin{gathered} 75 \\ (102) \end{gathered}$	IP 23	1-087-761-0X	2,795.00	1-087-765-0X	3,365.00	$\begin{gathered} 8.88 \\ (225.42) \end{gathered}$	$\begin{gathered} 2.62 \\ (66.68) \end{gathered}$	$\begin{gathered} .44 \\ (11.18) \end{gathered}$	$\begin{gathered} 3.31 \\ (84.14) \end{gathered}$	$\begin{gathered} 73 \\ (33.0) \end{gathered}$
	IP 54	1-087-762-0X	3,395.00	1-087-766-0X	3,965.00					
	IP 55	1-087-762-BX	3,650.00	1-087-766-BX	4,220.00					
$\begin{gathered} 105 \\ (142) \end{gathered}$	IP 23	1-087-781-0X	3,100.00	1-087-785-0X	3,670.00	$\begin{gathered} 9.38 \\ (238.12) \end{gathered}$	$\begin{gathered} 3.12 \\ (79.38) \end{gathered}$	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$	$\begin{gathered} 3.81 \\ (96.84) \end{gathered}$	$\begin{gathered} 80 \\ (36.0) \end{gathered}$
	IP 54	1-087-782-0X	3,500.00	1-087-786-0X	4,070.00					
	IP 55	1-087-782-BX	3,755.00	1-087-786-BX	4,325.00					

[^8]
Specifications

Nominal Static Torque	No. of Friction Discs	SolenoidSize	Maximum solenoid Cycle Rate ${ }^{1}$	Thermal Capacity(2)	Inertia ($\mathbf{W k}^{\mathbf{2}}$)
$\begin{aligned} & \hline \mathrm{Ib-ft} \\ & (\mathrm{Nm}) \end{aligned}$			cycles/ min	$\begin{aligned} & \text { hp-sec/min } \\ & \text { (watts) } \end{aligned}$	$\begin{gathered} \mathrm{lb}-\mathrm{ft}^{2} \\ \left(\mathrm{kgm}^{2} \times 10-4\right) \\ \hline \end{gathered}$
$\begin{gathered} 10 \\ (14) \\ \hline \end{gathered}$	1	5	30	$\begin{array}{r} 17.5 \\ (249) \\ \hline \end{array}$	$\begin{gathered} .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 15 \\ (20) \\ \hline \end{gathered}$	1	6	25	$\begin{aligned} & 17.5 \\ & (249) \\ & \hline \end{aligned}$	$\begin{gathered} .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 25 \\ (34) \\ \hline \end{gathered}$	1	6	25	$\begin{array}{r} 17.5 \\ (249) \\ \hline \end{array}$	$\begin{gathered} .078 \\ (32.76) \\ \hline \end{gathered}$
$\begin{gathered} 35 \\ (47) \\ \hline \end{gathered}$	1	8	20	$\begin{aligned} & 17.5 \\ & (249) \end{aligned}$	$\begin{gathered} .078 \\ (32.76) \end{gathered}$
$\begin{gathered} 50 \\ (68) \\ \hline \end{gathered}$	2	6	25	$\begin{array}{r} 17.5 \\ (249) \\ \hline \end{array}$	$\begin{gathered} .108 \\ (45.36) \\ \hline \end{gathered}$
$\begin{gathered} 75 \\ (102) \\ \hline \end{gathered}$	2	8	20	$\begin{array}{r} 17.5 \\ (249) \\ \hline \end{array}$	$\begin{gathered} .108 \\ (45.36) \\ \hline \end{gathered}$
$\begin{aligned} & \hline 105 \\ & (142) \\ & \hline \end{aligned}$	3	8	20	$\begin{aligned} & 17.5 \\ & (249) \end{aligned}$	$\begin{gathered} .145 \\ (60.90) \\ \hline \end{gathered}$

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$10,15,25,50$	$5 \& 6$	42	20
$35,75,105$	8	48	20

(1) Maximum solenoid cycle rate is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ with 50% duty cycle. Does not relate to brake cycle rate (see Thermal Capacity).
(2) Thermal capacity rating is based on ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, stop time of one second or less, with no heat absorbed from motor. Derate thermal capacity by 25\% for vertical mounting. Refer to Selection Procedure Section.

Current Ratings (amperes)

		Voltage: 60 Hz						Voltage: $\mathbf{5 0 ~ H z}$			Voltage: DC			
Size	Current	115	200	230	400	460	575	110	220	380	24	95	115	230
5	Inrush Holding	$\begin{array}{r} 7.5 \\ .5 \end{array}$	$\begin{array}{r} 4.3 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ .2 \end{array}$	$\begin{array}{r} 2.2 \\ .1 \end{array}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{gathered} 1.5 \\ .09 \end{gathered}$	$\begin{array}{r} 5.4 \\ .3 \end{array}$	$\begin{gathered} 4.0 \\ .25 \end{gathered}$	$\begin{array}{r} 1.9 \\ .1 \end{array}$	$\begin{array}{r} 38.0 \\ .5 \end{array}$	$\begin{array}{r} 8.4 \\ .1 \end{array}$	$\begin{gathered} 5.6 \\ .08 \end{gathered}$	$\begin{gathered} 3.2 \\ .04 \end{gathered}$
6	Inrush Holding	$\begin{array}{r} 13.0 \\ .6 \end{array}$	$\begin{array}{r} 7.5 \\ .4 \end{array}$	$\begin{array}{r} 6.5 \\ .3 \end{array}$	$\begin{array}{r} 3.7 \\ .2 \end{array}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	$\begin{gathered} 2.6 \\ .1 \end{gathered}$	$\begin{array}{r} 9.4 \\ .5 \end{array}$	$\begin{gathered} 5.6 \\ .28 \end{gathered}$	$\begin{array}{r} 3.2 \\ .2 \end{array}$	$\begin{array}{r} 42.8 \\ .6 \end{array}$	$\begin{array}{r} 11.7 \\ .2 \end{array}$	$\begin{array}{r} 8.5 \\ .1 \end{array}$	$\begin{gathered} 3.7 \\ .06 \end{gathered}$
8	Inrush Holding	$\begin{array}{r} 17.6 \\ 1.2 \end{array}$	$\begin{array}{r} 10.3 \\ .7 \end{array}$	$\begin{array}{r} 8.8 \\ .6 \end{array}$	$\begin{array}{r} 5.0 \\ .3 \end{array}$	$\begin{array}{r} 4.2 \\ .3 \end{array}$	$\begin{gathered} 3.5 \\ .24 \end{gathered}$	$\begin{array}{r} 15.4 \\ .1 \end{array}$	$\begin{array}{r} 7.7 \\ .5 \end{array}$	$\begin{array}{r} 4.2 \\ .3 \end{array}$	$\begin{array}{r} 43.1 \\ .8 \end{array}$	$\begin{array}{r} 11.4 \\ .2 \end{array}$	$\begin{array}{r} 9.3 \\ .2 \end{array}$	$\begin{gathered} 4.6 \\ .09 \end{gathered}$

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate three-letter suffix when ordering a Stearns Brake.
Example of a complete part number:
1-087-732-01--FG - Lead wire position (external, left and right)

$|$| $\quad$$\square$
 230 Vac
 Does not apply |
| :--- |

Hub bore and output shaft size 1.125

Hub Bore, Shaft and Keyway Sizes

9th Digit of Model Number	Dimensions in Inches (Dimensions in Millimeters)				
	Bore Dia. (X)	Keyway*	Shaft Dia. (U)	Keyway*	Shaft Length (AH)
1	$\begin{gathered} \frac{1.125}{1.126} \\ \left(\frac{28.575}{28.600}\right) \end{gathered}$	$\begin{array}{\|c\|} .25 \times .12 \\ (6.35 \times 3.18) \end{array}$	$\begin{gathered} \frac{1.125}{1.124} \\ \left(\frac{28.575}{28.550}\right) \end{gathered}$	$\begin{gathered} .25 \times .12 \\ (6.35 \times 3.18) \end{gathered}$	$\begin{gathered} 2.62 \\ (66.68) \end{gathered}$
3	$\begin{gathered} \frac{1.375}{1.376} \\ \left(\frac{34.925}{34.950}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline .31 \times .16 \\ (7.94 \times 3.97) \end{array}$	$\begin{gathered} \frac{1.375}{1.374} \\ \left(\frac{34.905}{34.950}\right) \end{gathered}$	$\begin{array}{\|c} .31 \times .16 \\ (7.94 \times 3.97) \end{array}$	$\begin{gathered} 3.12 \\ (79.38) \end{gathered}$
5	$\begin{gathered} \frac{1.625}{1.626} \\ \left(\frac{41.275}{41.300}\right) \end{gathered}$	$\begin{array}{\|c} .38 \times .19 \\ (9.52 \times 4.76) \end{array}$	$\begin{gathered} \frac{1.625}{1.624} \\ \left(\frac{41.275}{41.250}\right) \end{gathered}$	$\begin{array}{\|c} .38 \times .19 \\ (9.52 \times 4.76) \end{array}$	$\begin{gathered} 3.75 \\ (95.25) \end{gathered}$

For sizes other than those shown, contact factory.
No motor frame adapters or foot mounting kit available.
*Keyseats made to ANSI B17.1 standard.

Standard AC Voltage
Ratings

Character	Voltage	$\mathbf{H z}$
B	115	60
D	110	50
E	200	60
F	230	60
H	220	50
L	460	60
M	480	50
N	575	60
O	$110 / 220$	50
P	$115 / 230$	60
Q	$230 / 460$ 230	60 50
R	$200 / 400$	60

Direct Current

Character	Voltage
T	12
U	24
V	36
W	48
X	95
Y	115
Z	230

Consult factory if other DC voltage is needed

Static Torque: 1.5 through $25 \mathrm{lb}-\mathrm{ft}$
Enclosure Material: Die Cast Aluminum
Enclosure Protection: IP 23 (formerly referred to by Stearns as NEMA 2).
Release Type: Side Release Knob
Installation, Service and Parts List:
P/N 8-078-905-27
Specifications: Page 11
Modifications: Pages 54-63
Maximum overhung or side load measured at one inch from end of shaft: 36 lbs

Universal Mounting: 1.5 through 15 lb -ft.
20 and $25 \mathrm{lb-ft}$ supplied with springs for vertical modification.

Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque $\mathrm{lb}-\mathrm{ft}$	Coil Size	T1	T2
$11 / 2-25$	$4, \mathrm{~K} 4$, $\mathrm{K} 4^{+}, \mathrm{M}^{+}$	25	24

Dimensions for estimating only. For installation purposes request certified prints.

Dimensions

Nominal Static Torque		No. of Friction Discs	"B"	"AH"
Lb-Ft	(Nm)			
1.5	(2)	1	4.13	2.69
3	(4)			
	(8)			
$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & (14) \\ & (20) \end{aligned}$	2		
20	(27)	3	4.56	2.25
25	(34)			

Pricing (Discount Symbol E3)

Nominal Static Torque		Basic Model Number			
Lb-Ft	$(N m)$	AC	List Price	DC	List Price
1.5	(2)	$1-056-703-00-\mathrm{XX}$	$\$ 2,480.00$	$1-056-707-00-\mathrm{XX}$	$\$ 2,780.00$
3	(4)	$1-056-713-00-\mathrm{XX}$	$2,500.00$	$1-056-717-00-\mathrm{XX}$	$2,800.00$
6	(8)	$1-056-723-00-\mathrm{XX}$	$2,565.00$	$1-056-727-00-\mathrm{XX}$	$2,865.00$
10	(14)	$1-056-733-00-\mathrm{XX}$	$2,665.00$	$1-056-737-00-\mathrm{XX}$	$2,965.00$
15	(20)	$1-056-743-00-\mathrm{XX}$	$2,765.00$	$1-056-747-00-\mathrm{XX}$	$3,065.00$
20	(27)	$1-056-753-00-\mathrm{XX}$	$2,855.00$	$1-056-757-00-\mathrm{XX}$	$3,155.00$
25	(34)	$1-056-763-00-\mathrm{XX}$	$2,950.00$	$1-056-767-00-\mathrm{XX}$	$3,250.00$

Ordering and Identification Information

The following example and tables provide information for selecting the appropriate twoletter suffix when ordering this Stearns Brake.

Example of a complete part number: 1-056-723-00-QC - Right hand leads

L 230/460 Vac
Shaft diameter is $7 / 8^{\prime \prime}$

Example of a complete part number: 1-087-232-00-QC-Right hand leads

L_ 230/460 Vac
Shaft diameter is $1-1 / 4$ "

Standard AC*
Voltage Ratings

Char- acter	Voltage	Hz
B	115	60
D	110	50
E	200	60
F	230	60
H	220	50
L	460	60
M	480	50
N	575	50
O	$110 / 220$	50
P	$115 / 208-230$	60
Q	$208-230 / 460$	60
R	$190 / 380$	50
* $200 / 400$	60	

Direct Current

Char- acter	Voltage
T	12
U	24
V	36
W	48
X	95
Y	115
Z	230

Character	Lead Wire Position
B	Form 2
C	Form 3

View facing mounting register on brake.

Static Torque: 6 through $105 \mathrm{lb}-\mathrm{ft}$.
Enclosure Material: Cast Iron Endplate and Housing
Release Type: Side Lever, maintained with automatic release.
Enclosure Protection: IP 23 \& 54 (formerly referred to by Stearns as NEMA 2 \& 4, respectively).
Installation and Service Instructions:
P/N 8-078-927-00
Parts List: P/N 8-078-917-02
Specifications: Page 17
Modifications: Pages 54-63
Self adjust - see SAB Modifications for new manual adjust.

For vertical mounting modification see SAB Modification Section.
Maximum overhung, or side load measured at one inch from end of shaft: 100 lbs on brake housing side, 150 lbs on endplate/foot mount side Brake set and release times in milliseconds, when brake and motor are switched separately (for T1/T2 definitions, see page 101):

Static Torque	Coil Size	T1	T2
$10,15,25,50$	$5 \& 6$	42	20
$35,75,105$	8	48	20

*Keyseats made to ANSI B17.1 standard.
Dimensions for estimating only. For installation purposes request certified prints.

Dimensional Data and Engineering Specifications/Unit Pricing (Discount Symbol A2)

Nominal Static Torque lb-ft (Nm)	Enclosure	Basic Model Number and List Price*				Dimensions in Inches (Dimensions in Millimeters)			Thermal Capacity (hp-sec/ min)	Inertia Wk ${ }^{2}$ (lb-ft²)	Wt. Ibs (kg)**
		AC	AC List Price	DC	DC List Price	A	Z	AF			
$\begin{gathered} 10 \\ (14) \end{gathered}$	IP 23	1-087-211-00	\$2,475.00	1-087-215-00	\$3,045.00	$\begin{gathered} 14.56 \\ (369.82) \end{gathered}$	9.32 (238.13)	$\begin{gathered} 3.56 \\ (90.42) \end{gathered}$	17.5	. 049	$\begin{gathered} 72 \\ (33.0) \end{gathered}$
	IP 54	1-087-212-00	2,675.00	1-087-216-00	3,245.00		9.38 (328.25)				
$\begin{gathered} 15 \\ (20) \end{gathered}$	IP 23	1-087-221-00	2,525.00	1-087-225-00	3,095.00	$\begin{gathered} 14.56 \\ (369.82) \end{gathered}$	9.32 (238.13)	$\begin{gathered} 3.56 \\ (90.42) \end{gathered}$	17.5	. 049	$\begin{gathered} 72 \\ (33.0) \end{gathered}$
	IP 54	1-087-222-00	2,725.00	1-087-226-00	3,295.00		9.38 (328.25)				
$\begin{gathered} 25 \\ (34) \end{gathered}$	IP 23	1-087-231-00	2,600.00	1-087-235-00	3,170.00	$\begin{gathered} 14.56 \\ (369.82) \end{gathered}$	9.32 (238.13)	$\begin{gathered} 3.56 \\ (90.42) \end{gathered}$	17.5	049	$\begin{gathered} 73 \\ (33.0) \end{gathered}$
	IP 54	1-087-232-00	2,800.00	1-087-236-00	3,370.00		9.38 (328.25)				
$\begin{gathered} 35 \\ (47) \end{gathered}$	IP 23	1-087-241-00	2,750.00	1-087-245-00	3,320.00	$\begin{gathered} 14.56 \\ (369.82) \end{gathered}$	9.32 (238.13)	$\begin{gathered} 3.56 \\ (90.42) \end{gathered}$	17.5	. 049	$\begin{gathered} 73 \\ (33.0) \end{gathered}$
	IP 54	1-087-242-00	2,950.00	1-087-246-00	3,520.00		9.38 (328.25)				
$\begin{gathered} 50 \\ (68) \end{gathered}$	IP 23	1-087-251-00	3,050.00	1-087-255-00	3,620.00	$\begin{gathered} 15.06 \\ (382.50) \end{gathered}$	9.81 (249.94)	$\begin{gathered} 4.06 \\ (103.12) \end{gathered}$	17.5	083	$\begin{gathered} 78 \\ (35.0) \end{gathered}$
	IP 54	1-087-252-00	3,250.00	1-087-256-00	3,820.00		9.88 (250.95)				
$\begin{gathered} 75 \\ (102) \end{gathered}$	IP 23	1-087-261-00	3,550.00	1-087-265-00	4,120.00	$\begin{gathered} 15.06 \\ (382.50) \end{gathered}$	9.81 (249.94)	$\begin{gathered} 4.06 \\ (103.12) \end{gathered}$	17.5	. 083	$\begin{gathered} 78 \\ (35.0) \end{gathered}$
	IP 54	1-087-262-00	3,750.00	1-087-266-00	4,320.00		9.88 (250.95)				
$\begin{gathered} 105 \\ (142) \end{gathered}$	IP 23	1-087-281-00	4,250.00	1-087-285-00	4,820.00	$\begin{gathered} 15.56 \\ (395.20) \end{gathered}$	10.32 (262.13)	$\begin{gathered} \hline 4.56 \\ (115.82) \end{gathered}$	17.5	117	$\begin{gathered} 81 \\ (37.0) \end{gathered}$
	IP 54	1-087-282-00	4,450.00	1-087-286-00	5,020.00		10.38 (263.65)				

[^9]
Solenoid-Actuated Brakes

	Marine		Marine		Maritime		Navy
Description	Suitable for many shipboard and severe duty applications		Suitable for many shipboard and severe duty applications		Suitable for many Coast Guard, shipboard and severe duty applications when "ductile iron" is specified		Designed to Military Specification
Compliance (Note A)	IEEE 45 ABS		$\begin{aligned} & \text { IEEE } 45 \\ & \text { ABS } \end{aligned}$		IEEE 45 Federal Standard 46 ABS		$\begin{aligned} & \text { MIL-B-16392C } \\ & \text { (Ships) } \end{aligned}$
Spring Set Operation (Note E)	Armature Actuated Brake (AAB)		Solenoid Actuated Brake (SAB)				
Stearns Series (Note B)	350	360	1-056-200-K0	$\begin{aligned} & \hline \text { 1-087-0xx-K0 } \\ & \text { 1-082-0xx-K0 } \\ & \text { 1-086-0xx-K0 } \end{aligned}$	1-087-Mxx	$\begin{aligned} & 1-082-4 x x \\ & 1-086-4 x x \end{aligned}$	$\begin{aligned} & 1-087-6 x x \\ & 1-082-6 x x \\ & 1-086-6 x x \end{aligned}$
Enclosure	IP 56	IP 56	IP 56	$\begin{gathered} \text { (Note C) } \\ \text { IP } 54, \text { IP } 56 \end{gathered}$			IP 56
Enclosure Finish	DI - Water Based Primer Alum - anodize MIL-A-8525 F		Water Based Primer		Alkyo MIL T	$\begin{aligned} & \overline{\text { rimer }} \\ & -645 \mathrm{C} \end{aligned}$	Enamel MIL-E-15090
Coil	Encapsulated Construction Class H Insulation		Injection Molded Construction Class B Insulation		Injection Mol Class	Construction sulation	Encapsulated Class H
Endplate or Mount Plate Material	Steel		Cast Iron		Duc	Iron	Ductile Iron
Housing Material	Cast Aluminum or Ductile Iron		Cast Iron		Duc	Iron	Ductile Iron
Support Plate Material	N/A		Steel	(Note H)	Duc	Iron	Ductile Iron
Pressure Plate \& Stationary Disc Material	N/A		Brass		Brass		Brass
Self Adjusting (Note G)	No. Gap By Gage		No, Gap By Scale	Yes			Yes
Manual Release (Note D)	Optional		Maintained		Maintained		Non-Maintained

A. IEEE 45 compliance nameplate is optional. ABS Certificate SB374021
B. Additional options and modifications are included in the full 12 digit part number
C. IP 56 with side release option available in 1-087-000-K0 \& 1-082-000-K0
D. The maintained release holds the brake in a release condition until the brake is electrically, or manually, re-engaged

The non-maintained ("deadman") release is manually held in the the released condition, re-setting when the force is removed
E. Spring-set, Solenoid with coil \& linkage actuated brake (SAB), AC or DC voltage coil

Spring-set, Armature actuated direct-acting brake (AAB), DC voltage coil
F. Carrier ring friction disc is standard with the 350 \& 360 series and is an option in the SAB brakes
G. Stainless Steel Self-Adjust is standard with the 1-08x-600 and 1-087-M00
H. 1-087: cast aluminum; 1-082: cast iron; 1-086: ductile iron

Armature-Actuated Brakes

MIL-B-16392C is inactive for new design and is no longer required, except for replacement purposes, per statement issued by Naval Sea Systems Command in June of 2001. The armature-actuated brake (AAB) was designed in consultation with Naval specification authorities as a suitable Commercial off the shelf (COTS) motor brake.

Series 350

Pressure Plate Mount Internal Maintained Manual Release

Torque (lb-ft)	Model Number	NEMA Frame Size	List Price
75	$3-51-734 \mathrm{H0}$	182TC-256TSC	$\$ 4,266.00$
110	$3-51-744 \mathrm{H0}$	182TC-256TSC	$\$ 4,466.00$
110	$3-51-744 \mathrm{J0}$	284TC-286TSC	$\$ 4,665.00$
110	$3-51-744 \mathrm{K0}$	324TC-405TSC	$\$ 4,866.00$
180	$3-51-844 \mathrm{J0}$	284TC-286TSC	$\$ 4,909.00$
180	$3-51-844 \mathrm{K0} 0$	324TC-405TSC	$\$ 5,209.00$
300	$3-51-944 \mathrm{k0}$	324TC-405TSC	$\$ 6,605.00$

Series 360
Magnet Body Mount
Internal Maintained/ Optional External Non-Maintained Manual Release

Torque $(\mathrm{lb}-\mathrm{ft})$	Model Number	NEMA Frame Size	List Price
60	$3-61-644 \mathrm{H0}$	182TC-256TSC	$\$ 3,395.00$
60	$3-61-644 \mathrm{JO}$	284TC-286TSC	$\$ 3,595.00$
75	$3-61-734 \mathrm{H0}$	182TC-256TSC	$\$ 4,266.00$
110	$3-61-744 \mathrm{HO}$	182TC-256TSC	$\$ 4,466.00$
110	$3-61-744 \mathrm{J0}$	284TC-286TSC	$\$ 4,665.00$
180	$3-61-844 \mathrm{J0}$	284TC-286TSC	$\$ 4,909.00$
180	$3-61-844 \mathrm{K0}$	324TC-405TSC	$\$ 5,209.00$
300	$3-61-944 \mathrm{K0}$	324TC-405TSC	$\$ 6,605.00$
300	$3-61-944 \mathrm{LO}$	444TC	$\$ 6,915.00$

Stearns 1-082-3X4-06 series of electric fail-safe motor brakes are now certified for use in underground mines by the federal Mine Safety and Health Administration (MSHA).
Stearns is the only supplier of MSHA certified motor brakes.
MSHA approves and certifies products for use in underground coal and gassy mines to ensure that they do not cause a fire or explosion.

Features:

Fan Guard Mounted

Mounting face: $12.5^{\prime \prime} \mathrm{AK}, 11.0^{\prime \prime} \mathrm{AJ}$
(NEMA 324 and 326 TC, NEMA 364 and
365 TC, NEMA 404 and 405 TC)
Static Torque: 125 through $330 \mathrm{lb}-\mathrm{ft}$
Spring-Set Electrically-Released
Enclosure Material: Cast Iron
Manual Release Type: Side lever, latching with automatic reset when electric power is applied to the brake coil

Enclosure Protection: IP 56
Self-Adjust Design: Automatic adjustment for friction disc wear - to reduce maintenance

Class H Coil Insulation

Thermal Cut-Out Switch

Electrical Connections terminate at terminal block

MSHA Certification Number: 18-XPA070006-0

Options:

- Internal Encoder
- Internal Electric Heater
- Electrical Release Indicator Switch
- Carrier Ring Friction Discs

Model No. IP56	No. of Discs	Torque Lb-Ft	\mathbf{C}	${ }^{* *} \mathbf{L}$	SL
1-082-314-06	2	125	5.72	4.63	5.65
$1-082-324-06$	2	175	5.72	4.63	5.65
$1-082-334-06$	3	230	6.22	5.13	6.15
$1-082-344-06$	3	330	6.22	5.13	6.15

** "L" oIm. Apples to maximum kenwar slot length.

Unit Pricing (Discount Symbol D1)

Model No.	Enclosure	Nominal Static Torque Ib-ft (Nm)	List Price
1-082-314-06	IP56	$125(169)$	$\$ 26,700$
$1-082-324-06$	IP56	$175(237)$	$\$ 27,800$
1-082-334-06	IP56	$230(312)$	$\$ 29,000$
$1-082-344-06$	IP56	$330(447)$	$\$ 30,000$

Ordering Information - specify ${ }^{1}$:

- Model Number
- Bore \& keyway ${ }^{2}$
- Voltage ${ }^{2}$
- Options
- Leadwire packing gland - left or right (looking towards brake mounting face). Note: encoder option requires that the encoder wiring enters the brake from the opposite side of all of the other brake wiring.

1 These brakes need to be purchased from the motor manufacturer, as the required shaft length (dimension "SL" above) is not standard.

2 Refer to Stearns Catalog page 37

Stearns Solenoid Actuated Brakes with Internally Mounted Encoder

Features

- Available in frame sizes 182TC - 505TC
- All enclosure ratings available, including hazardous location
- Separate conduit exits are provided for the brake and encoder leads, to minimize potential electrical interference
- Choice of popular encoder manufacturers

Benefits

- Encoder located in protected environment enclosed inside the brake housing
- Simplified encoder mounting - using a hub or shaft-mount encoder - and it's already done!
- Reduced package length - an internal encoder does not add any length to the brake
- Lower installed cost

Ordering Information

Stearns brakes with internal encoders are purchased through the motor manufacturer, as the required shaft length and diameter are non-standard. An internal encoder is not a retrofit option, like a brake coil, heater or switch. To order the brake motor package, specify the brake model and encoder option from table on following page.

Encoder Brakes (Con't)

Stearns Solenoid Actuated Brakes with Internally Mounted Encoder

Ordering Information

For Stearns Solenoid Actuated Brakes (SABs), with internal encoders -
Specify the complete brake model number and encoder option from the following table.
Contact factory for pricing.
Industrial Locations ${ }^{1}$

Frame Size	Brake Series	Torque Range (lb-ft)	Encoder Options ${ }^{2}$	Connector / Cable ${ }^{3}$	Stearns Drawing No. ${ }^{4}$
182TC - 256TC	1-087-E00	25-105	HS20	M12, 8 Pin / 15 ' or 5 m	1087E00ED
324TC - 405TC	1-081-000	125-230	$\begin{aligned} & \text { HS20 } \\ & \text { HS25 } \end{aligned}$	M12, 8 Pin / 15' M12, 8 Pin / 5m	10810022ED
324TC - 405TC	1-082-000	125-440	$\begin{aligned} & \text { HS20 } \\ & \text { HS25 } \end{aligned}$	M12, 8 Pin / 15' M12, 8 Pin / 5m	10820022ED
444TC - 505TC	1-086-000	500-1000	$\begin{gathered} \hline \text { HS20 } \\ \text { HS25 } \\ \text { HS35M } \end{gathered}$	M12, 8 Pin / 15' M12, 8 Pin / 5m 10 Pin MS / 15'	$\begin{gathered} \hline 10860022 \text { ED } \\ \text { 10860022ED } \\ 10860022 E 35 D \end{gathered}$

Division 1 Hazardous Location ${ }^{5}$

182TC - 256TC	$1-087-300$	$10-105$	HS20	M12, 8 Pin / 15' M12, 8 Pin / 5m	$1087308 D^{6}$
324TC - 405TC	$1-082-300$	$125-330$	HS20 HS25	M12, 8 Pin / 15' M12, 8 Pin / 5m	$1082304 D^{7}$

${ }^{1}$ Brake must be supplied by the motor manufacturer (a longer "stepped-down" motor shaft is required).
${ }^{2}$ Encoders are Optical, 1024 PPR.
${ }^{3}$ Cables are shielded. Lengths are from encoder connector, inside the brake (not from outside of brake housing)
${ }^{4}$ Request this drawing for shaft design requirements
${ }^{5}$ No motor shaft modifications required, beyond the brake requirements for a standard hazardous location brake.
${ }^{6}$ Drawing 1087308D brake model mounts close-coupled to the motor end bell.
For the brake model that mounts to the motor fan guard - with a slinger - refer to drawing 10873052D.
${ }^{7}$ Based on 182 C-frame on accessory end of motor (7-1/4" bold circle).

In addition to the fully enclosed brake with internal encoder options, encoders can be adapted externally to Stearns brakes:

Information Needed for Modifications

Stearns is dedicated to providing you with the most comprehensive selection of modified spring-set disc brakes on the market today. We have included a list of our more popular modifications complete with descriptions, pictures and graphics when applicable and list price adders along with their representative series. Note that modification list prices are subject to the same discounts as apply to the complete brake assembly.
Below please find examples of how the modifications are called out with a letter in the 8th position of the 12 digit model number. Note that these listings are not complete, but represent our more popular selections. For any special applications and modification requirements not found here, please contact your Stearns representative.
IMPORTANT - The modification letter will appear in the 8th position to call out the modification.

Examples:

1-056-XXX- X	
	- 8th position
1-087-XXX- X	
	- 8th position
${ }^{1-08 X-X X X-~} \mathrm{X}$	
	- 8th position

See specific tables for some of the available options of the series required.
If two or more letter modifications are required, the 8th position of the part number will remain zero and position 10 , 11 and 12 will be assigned by Stearns as a special part number.

All Series

Modification	Letter
Vertical Mounting - Above Motor	A
Class H Insulation	H
Space Heater (115 Volt Circuit)	I
Space Heater (115 Volt Circuit), Brass Pressure Plate and Stationary Disc	J
Brass Pressure Plate and Stationary Disc	K
Vertical Mounting - Below Motor	L
Thru-Shaft Housing (Standard)	Q
Vertical Mounting - Above Motor and Class H Insulation	T
Electrical Release Indicator Switch, N.O. contacts	W
Side Manual Release with Shaft Through Housing Stamped Steel	Z
Series 87,X00 Only	N
Vertical Mounting - Above Motor, Brass Pressure Plate and Stationary Disc	Y
Series 81,X00, 82,X00 87,000 and 87,100	
Side Manual Release	

Solenoid Actuated Brakes Modification Index

Category	Description	Modification Number (M \qquad _)	Page
Coils	Class H Insulation	M6	56
	DC Coil Option	M9	57
	Non-Standard Voltage AC	M25	60
	Non-Standard Voltage DC	M9	57
	Special Leadwire Length	M31	61
Corrosion Resistance	Brass Pressure Plate	M3	55
	Brass Stationary Disc	M4	55
	Breather Drain	M5	56
	Space Heater (115 or 230 volt)	M13	57
	Special Paint	M14	58
	Stainless Steel Self-Adjust	M15	58
	Stainless Steel Hardware	M16	58
	Corrosion-Resistant Endplate	M39	62
	Stainless Steel Hub	M42	62
Endplates	Special Internal Leadwire Hole	M35	61
	Corrosion-Resistant Endplate	M39	62
	Special Milling: Flat Bottom on Housing \& Endplate	M40	62
Friction Discs	Special Material Friction Disc	M44	63
	Carrier Ring Disc (Steel or Zinc Aluminum)	M46	63
	Carrier Ring Disc (Bronze)	M47	63
Gaskets	Motor Gasket	M38	62
	Viton ${ }^{\text {® }}$ Gasket	M43	63
Hubs/ Brake Shaft	Non-Standard Bore or Keyway	M11	57
	Special Shaft - Coupler Brakes	M29	60
	Taper-Lock Hubs	M30	61
	Stainless Steel Hub	M42	62
	Splined Hub and Friction Disc	M45	63
Machining Options	Encoder/Tach Machining	M7	56
	Metric Machining	M33	61
	Special Milling: Flat Bottom on Housing \& Endplate	M40	62
Manual Adjust	Manual Adjust for 87,000 Series	M48	63
Manual Release	Side Manual Release	M12	57
	Non-Maintained (Deadman)	M32	61
	Internal Release	M37	62
Mounting	Vertical	M21, M23, M24	59-60
	Metric Machining	M33	61
	Motor Frame Adapters		97
	Foot Mounting Kits		98
Nameplates	Mylar or Metal	M10	57
	Brass Nameplate	M41	62
Paint/ Special Finish or Material	Brass Pressure Plate	M3	55
	Brass Stationary Disc	M4	55
	Special Paint	M14	58
	Stainless Self-Adjust	M15	58
	Stainless Steel Hardware	M16	58
	Corrosion-Resistant Endplate	M39	62
	Stainless Steel Hub	M42	62
Special Housing	Thru-Shaft NEMA 2	M19	59
	Thru-Shaft NEMA 4 and 4X	M20	59
	Split Housing	M36	62
Switches	Electrical Release Indicator	M1	55
	Electrical Release Indicator Proximity Switch	M2	55
	Thermal Switch	M18	58
	Wear Indicator	M27	60
Tach Mounting	Tach Machining	M7	56
	Thru-Shaft NEMA 2	M19	59
	Thru-Shaft NEMA 4 and 4X	M20	59
Torque Derating	Brass Pressure Plate	M3	55
	Brass Stationary Disc	M4	55
	Special Derating of Torque	M34	61
Wiring Options	Conduit Box with Terminal Strip	M8	56
	Terminal Strip	M17	58
	Special Length Leadwires	M31	61
	Internal Leadwire Hole	M35	61

M1 Electrical Release Indicator Switch

This switch is used to indicate when the brake is in a released, non-holding position. This mechanism

Series	List Price Adder
$56, \mathrm{X} 00$ \& 65,300	$\$ 450.00$
81,$000 ; 82,000 ; 87, \mathrm{X} 00$	450.00
$86, \mathrm{X} 00$	900.00

Not available on 56,800 or 87,800 Series Brakes.

M2 Electrical Release Indicator Proximity Switch

Same function as the switch in M1 above; except, M2 uses an electronic proximity sensor.

Series	List Price Adder
81,000	
82,000	$\$ 1375.00$
$87, \mathrm{X} 00$	
$86, \mathrm{X} 00$	2750.00

Not available on 56,800 or 87,800 Series Brakes.

M3 Brass Pressure Plate

Typically used in marine applications or in applications where the potential for sparks need to be eliminated. Brass can also be used to reduce torque.

Series	List Price Adder
$56, \mathrm{X00}$	See M4
$65, \mathrm{X00}$	$\$ 250.00$
81,$000 ; 82,000$	800.00
$86, \mathrm{X00}$	1050.00
$87, \mathrm{X00}$	600.00

M4 Brass Stationary Discs

Used with brass pressure plate (List per disc).

Series	List Price Adder
$56, \mathrm{X00}$	$\$ 250.00$
$65, \mathrm{X00}$	250.00
$87, \mathrm{X} 00$	450.00
81,$000 ; 82,000$	600.00
$86, \mathrm{X} 00$	750.00

W5
 Breather Drain

A drain plug is tapped into the bottom of the housing to let moisture escape. This option is only available on brakes with cast aluminum or cast iron housings.

Series	List Price Adder
$56, \mathrm{X} 00$	$\$ 380.00$
$65, \mathrm{X} 00$	500.00
81,000	
82,000	380.00
$86, \mathrm{X} 00$	
$87, \mathrm{X} 00$	

M6 Class H Insulation

Brake is provided with an epoxy encapsulated coil, rated for NEMA Class H designation.
These Class H coils are standard on hazardous location brakes.

Series	List Price Adder
$56, \mathrm{X} 00$	$\$ 145.00$
$87, \mathrm{X} 00$	175.00
81,000	285.00
82,000	
$86, \mathrm{X} 00$	570.00

M7

Housing Machining for Encoder/Tach Mounting

Series	Standard Machining ${ }^{1}$				Close Tolerance ${ }^{2}$			Tether Mount ${ }^{3}$	
	Bolt Circle \& Register		Bolt Circle - but no Register		Bolt Circle \& Register			A Single Bolt Hole	
	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder	Maximum Thru-Shaft Dia. (inch)	Open ${ }^{4}$ Enclosure List Price Adder	Enclosed ${ }^{5}$ List Price Adder
56,X00 (except N/A for 56,800)	N/A	N/A	N/A	N/A	N/A	N/A		\$350	\$460
87,000-87,100	\$700	\$1,200	\$80	\$350	\$2,450	\$2,750	1.63	\$240	\$350
87,M00-87,500-87,600	N/A	\$1,200	N/A	\$350	N/A	\$2,750		N/A	\$350
81,000-82,000 ${ }^{6}$	\$1,100	\$1,375	\$305	\$580	\$2,550	\$2,825	2.5	\$465	\$740
86,000	\$1,100	\$1,375	\$380	\$780	\$2,550	\$2,950		\$540	\$940

${ }^{1}$ Standard Machining: The housing is machined for a thru shaft, and to allow for an encoder or tach to be mounted. This option is only available on brakes with cast aluminum or cast iron housings. Consult factory for availability.
${ }^{2}$ Close tolerance: The housing and endplate are assembled and dowel pinned together - then machined as a matched set for a through shaft and encoder mounting. This option is only available on brakes with cast aluminum or cast iron housings. This option is recommended for Series 81,$000 ; 82,000$; and 86, X00 due to the long distance between the motor and encoder.
${ }^{3}$ Tether Mount: The housing is machined for a through shaft, and a single tapped hole for a bolt to secure a tether arm. ($56, X$ has a through hole and tach-welded nut on inside of housing, instead of a tapped hole).
${ }^{4}$ Referred to on the product pages in the catalog as IP23
${ }^{5}$ Referred to on the product pages as IP54/55 (these enclosure ratings no longer apply when the housing is machined for this modification - the customer is responsible for meeting any specific enclosure rating when assembling the encoder.
${ }^{6}$ M7 Modification for Series 81,000 and 82,000 will also require the M12 Modification; the side manual release.

M8 Conduit Box with Terminal Strip

A terminal strip is located inside the conduit box. It allows for easy connection and identification of lead wires.

Series	List Price Adder
All series except hazardous location (not available for the 48,100 series)	$\$ 300.00$ (IP 23) $\$ 600.00$ (IP 54)
All hazardous location brakes	$\$ 600.00$

M9 DC Coil Option

For DC voltage applications. Operates with an electronic DC switch module.

Series	List Price Adder	Additional Adder for Non-Standard Voltage
$56, \mathrm{X} 00$	$\$ 300.00$	$\$ 250.00$
$87, \times 00$	570.00	250.00
81,000	1050.00	250.00
82,000	1565.00	250.00
$86, \mathrm{X} 00$	2625.00	500.00

For standard voltage listing, see the ordering information section for the specific brake.

Not available on Hazardous Location Brakes.

M10 Nameplates

To order new brake nameplates, the serial number of the brake is required. A loose nameplate shipped from Stearns Division without being attached to a brake must have all agency markings removed (UL, CSA, etc.). In order to have a brake renameplated with the appropriate agency markings, it must be returned to Stearns Division for product verification.

List Price:	First Nameplate	$\$ 150.00$
Net Price:	Additional Mylar Nameplates	1.50
	Additional Metal Nameplates	4.00

M11 Nonstandard Hub or Keyway

For standard bore diameter and keyway specifications, see specific brake selection page. For taper bores, consult factory for pricing.

	List Price Adder					
Description	$\mathbf{4 8 , 1 0 0}$	$\mathbf{5 6 , X 0 0}$	$65, \mathbf{X 0 0}$	81,000 82,000 86,000	87,000	
87,100	87,800	87,700				
All Quantities and Enclosures	$\$ 225.00$	225.00	325.00	600.00	250.00	250.00

M12 Side Manual Release

Side release not available on the 1-065-300 or the 1-086-000

Sheet Metal Housing (IP 23 Only)	List Price Adder
56,$000 ; 56,400 ; 56,500$	$\$ 50.00$
87,$000 ; 87,100$	$\$ 50.00$
Cast Iron Housing	List Price Adder
87,000 IP 23	$\$ 385.00$ includes casti iron housing adder of $\$ 110$
87,000 IP 54	$\$ 275.00$
81,000	
82,000	$\$ 350.00$

M13 Space Heater (115 or 230 Volt Only)

A space heater cartridge is used to prevent moisture build-up inside the brake housing.

Series	Wattage	List Price Adder
$56, \mathrm{X} 00^{*}$	15	$\$ 210.00$
81,$000 ; 82,000 ; 86, \mathrm{X} 00$	50 and 75	275.00
$87, \mathrm{X} 00^{* *}$	25 to 30	225.00
Hazardous Duty Brakes	25 to 50	750.00

*Not available on 56,800 or 87,800 Series Brakes
**Not available in 87,800 Class I

56,000 Series

87,000 Series (also representative of 81,$000 ; 82,000 \& 86,000$ Series)

The standard paint for all brake series (except BISSC Certified \& Maritime/Navy) is a red, water-base primer, painted inside and out.
For additional corrosion protection, a special (green) zinc chromate primer can be provided (painted inside and out) in place of the standard red primer. List price adders as shown.
Other Special Paint options are available - either primers, a white epoxy finish coat, or clean finish (exterior primer removed). Consult factory for pricing.

Series	List Price Adder
$56, \mathrm{X00}$	$\$ 210.00$
$65, \mathrm{X00}$	300.00
81,$000 ; 82,000 ;$ $86, \mathrm{X} 00$	550.00
87,000	525.00

BISSC Certified paint (white epoxy exterior paint) is standard for brake series with IP55 and IP57 enclosure ratings - and the prices are included in the standard list prices.
Maritime and Navy brakes have their own specified paints, with pricing included in the standard list prices.

M15 Stainless Steel Self-Adjust Mechanism

For severe duty applications. This option includes a stainless steel pinion and plated wrap spring in the auto-adjust mechanism. It is only available on the 81,$000 ; 82,000 ;$ 86,000 and 87,000 Series Brakes

Series	List Price Adder
81,$000 ; 82,000 ;$ 87,000	$\$ 350.00$
$86, \times 00$	$\$ 700.00$

M16 Stainless Steel Hardware

All external hardware is provided in stainless steel.

Series	List Price Adder
48,100	$\$ 125.00$
$56, \mathrm{X} 00$, $87, X 00$	$\$ 150.00$
$81,000,82,000$ 86,000	$\$ 275.00$

M17 Terminal Strip

A terminal strip is located in the inside of the brake, on the support plate. It allows for easy connection and identification of lead wires.

Series	List Price Adder
ALL	$\$ 150.00$

56,000 Series

87,000 Series (also representative of 81,000; 82,000 \& 86,000 Series)

M18 Thermostat (thermal switch)

This switch is used to indicate when a brake is overheating. Thermostats are standard in $8 \mathrm{X}, 300$ and $65, \mathrm{X} 00$ Series. This option is for NON-UL brakes only.

Series	Switch Operation Specificatons	List Price Adder
$87, \mathrm{X} 00$	Normally Closed: Opens at $295^{\circ} \mathrm{F}$, Closes at $255^{\circ} \mathrm{F}$	$\$ 400.00$
$81,000,82,000$ $86, \mathrm{X} 00$	Normally Closed: Opens at $210^{\circ} \mathrm{F}$, Closes at $180^{\circ} \mathrm{F}$	400.00
$56, \mathrm{X} 00$	Normally Closed: Opens at $195^{\circ} \mathrm{F}$, Closes at $175^{\circ} \mathrm{F}$	400.00

This configuration allows for the motor shaft to extend beyond the housing of the brake.

This modification lowers the brake enclosure rating to IP10.

Series	List Price Adder
$56,000,56,400$	$\mathrm{~N} / \mathrm{C}$
$56,100,56,200$	$\$ 110.00$
56,600	110.00
$81,000,82,000$	225.00
86,000	300.00
$87,000,87,100$ sheet metal	$\mathrm{N} / \mathrm{C}^{*}$
$87,000,87,100$ with cast iron housing	225.00 (adder for cast iron housing is $\$ 210.00$ additional)

*Up to 1-5/16".
Above 1-5/16", add \$80.00.

M20 Through-Shaft Cast Iron Enclosure with Lip Seal

This configuration allows the motor shaft to extend beyond the housing of the brake with a bushing to use with a housing lip seal.

This modification lowers the brake enclosure rating to IP10.

Series	List Price Adder
$56,100,56,200$ 56,600	$\$ 220.00$
$81,000,82,000$	500.00
86,000	700.00
$87,000,87,100$	300.00

M21
 Vertical Mounting for 56,000 Series \& 65,300 Series

 3 Friction Disc BrakeThe 56,000 20 and $25 \mathrm{lb}-\mathrm{ft}$ Series Brakes are shipped with spring kits. Vertical modification at 15° from horizontal. Read installation and service instructions for details on its use.

Description	List Price Adder
Factory assembly for three disc configuration.	$\$ 20.00$

Example of 56,000 Series spring requirements for vertical above and below mounting.

M23 Vertical Mounting for $87, \mathrm{X00}$ Series
 For factory modification to vertical above or below application.

 Vertical modification at 15° from horizontal.Series $87,000 \& 87,100$

Torque Value (lb-ft)	 IP 54 steel hsg Above	 IP 54 steel hsg Below	IP 54/55 cast iron Above	IP 54/55 cast iron Below
$6,10,15,25$ \& 35	$\$ 95.00$	no mod req'd	$\$ 370.00^{*}$	no mod req'd
$50 \& 75$	$\$ 105.00$	$\$ 105.00$	$\$ 380.00^{*}$	$\$ 105.00$
105	$\$ 135.00$	$\$ 135.00$	$\$ 410.00^{*}$	$\$ 135.00$

*Includes adder for side manual release
Series 87,300; 87,800; 87,700

Torque Value (lb-ft)	Vertical Above	Vertical Below
$6,10,15,25 \& 35$	$\$ 95.00$	no mod req'd
$50 \& 75$	$\$ 105.00$	$\$ 105.00$
105	$\$ 135.00$	$\$ 135.00$

Example of 87,000 Series spring requirements for vertical above mounting.

These brakes require factory modifications for vertical applications. Vertical modification at 15° from horizontal.

Series	Torque Value (lb-ft)	IP 23 Below	IP 54 Above	IP 54 Below
81,000 $\& 82, \mathrm{X00}$	$125 \& 175$	$\$ 250.00$	$\$ 575.00^{*}$	$\$ 250.00$
81,000 $\& 82, \mathrm{X00}$	230	300.00	650.00^{*}	300.00
$82, \mathrm{X00}$	330	300.00	650.00^{*}	300.00
$82, \mathrm{X00}$	440	500.00	850.00^{*}	500.00
86,000	$500 \& 750$	750.00	750.00^{*}	750.00

*Includes adder for side manual release

Example of 81,000 Series pin, spring and spacer requirements for vertical above mounting.

M25 Voltage Non-Standard (AC)

For standard voltage listing, see the ordering information section for the specific brake.

Series	List Price Adder
48,100	$\$ 165.00$
$65, \mathrm{X} 00$	165.00
56,000	165.00
81,$000 ; 82, \mathrm{X} 00$	200.00
$86, \mathrm{X00}$	400.00
$87, \mathrm{X00}$	175.00

M27 Wear Indicator (Friction Disc) Switch

A mechanical switch is installed to indicate when the friction disc requires replacement.

Series	List Price Adder
81,$000 ; 82, \mathrm{X00}$	$\$ 225.00$
86,000	225.00
$87, \times 00^{*}$	225.00

*Switch supplied with leads (Switches N/A on Series 87,800)

87,000 Assembly

87,000 Assembly

M29 Special Shaft-Coupler Brake and Foot Mount Brake

Any non-standard input or output shaft on a 56,700, 87,200 or 87,700 Series Brake.

Series	List Price Adder
56,700	$\$ 325.00$
87,$200 ; 87,700$	325.00

For use in severe duty applications and reversing application to secure the brake hub to the motor shaft.

Series	Series	List Price Adder
87,$000 ;$ 87,100 IP 23 only	10 to $35 \mathrm{lb}-\mathrm{ft}$	$\$ 200.00$
	50 to $75 \mathrm{lb}-\mathrm{ft}$	225.00
	$125 \& 175 \mathrm{lb}-\mathrm{ft}$	225.00
	$230 \mathrm{lb}-\mathrm{ft}$	325.00
82,000	$125 \& 175 \mathrm{lb}-\mathrm{ft}$	375.00
	$230 \& 330 \mathrm{lb}-\mathrm{ft}$	550.00
	$440 \mathrm{lb}-\mathrm{ft}$	675.00

M31 Special Length Lead Wires

Up to 5	Series	List Price Adder
	All	$\$ 65.00$

Over	Series	List Price Adder
	All	$\$ 130.00$

M32 Non-Maintained (Deadman) Manual Release

The brake is mechanically released while the release is pulled into a release position. Once released, the brake sets.

| Series* List Price
 Adder
 $56,200,56,700$,
 $56,800 \& 56,900$ $\$ 110.00$
 $56,000,56,400 \&$
 56,500 185.00
 81,$000 ; 82,000$
 $\& 87,000$ 125.00
 86,000 |
| :--- | | *N/A on $56,300$. |
| :--- |
| Standard on 56,100 and $56,600$. |

M33
 Metric Machining Including Cast Iron Endplate

Stearns SAB's can be used with metric motor frames. The following table indicates standard frame capabilities for an IEC B14 Face mount.

Series	IEC Frame Sizes	List Price Adder
56,$200 ; 56,400 ;$ 56,600 \& 56,900	B14 flange in sizes 80; 90 \& 100 B5 flange in sizes D63 \& D71	$\$ 340.00$
56,500	B14 flange in sizes 112; 132 \& 160 B5 flange in sizes D71; D80; D90; D100 \& D112	$\$ 340.00$
87,000	B14 flange in sizes 112; 132 \& 160 B5 flange in sizes D71; D80; D90; D100 \& D112	$\$ 340.00$

M34 Derating of Torque

Stearns industrial SAB's can be custom built to meet your specific torque requirements.

Series	List Price Adder	Derate To
56,500	$\$ 315.00$	$6 \mathrm{lb}-\mathrm{ft}$
87,100	315.00	20 or $30 \mathrm{lb}-\mathrm{ft}$
$81,000 \& 82,000$	460.00	To be approved with application engineering

M35 Special Internal Lead Wire Hole with Bushing

Any non-standard, internal lead wire hole in the endplate.

Series	List Price Adder
All brakes except hazardous location brakes	$\$ 175.00$

SAB's can be provided with a split housing.

Series	List Price Adder
81,$000 ; ~ 82,000$ $\& 86,000$	$\$ 725.00$
81,$000 ; 82,000$ 86,000 gasketed	$\$ 1,000.00$
87,$000 ; 87,100$ sheet metal	$\$ 200.00$
87,$000 ; 87,100$ cast iron gasketed	$\$ 250.00$

M37 Internal Release

An internal manual release requires that the housing be removed before the brake can be released by hand.
*N/A for hazardous location brakes

Series	List Price Adder
$87,0 X X ; ~ 81,0 X X ;$ $82,0 X X ; ~ 86,0 X X$	$\mathrm{~N} / \mathrm{C}$

M38 Motor Gasket

The brake is provided with an additional C-Face gasket to be placed between the brake and motor.

Series*	List Price Adder
81,$000 ; 82,000 ;$ 86,000	$\$ 100.00$
$56, \mathrm{X00} \& 87,000$	75.00

*N/A for hazardous location brakes

M39 Corrosion-Resistant Endplate

Rust preventative treatment applied to brake endplate.

Series	List Price Adder
$56,200,56,400$, $56,500,56,800 \&$ 65,300	$\$ 425.00$
81,$000 ; 82, \mathrm{X} 00$ $\& 86,000$	575.00
$87, \mathrm{X} 00$	475.00

M40 Special Milling: Flat Bottom on Housing \& Endplate

This modification is provided in the event the flange between the endplate and housing interfere with the mounting configuration.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 650.00$

W41 Brass Nameplate with Special Engraving

Brass nameplates offer greater durability in outdoor applications.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 75.00$

M42 Stainless Splined Hub

Stainless steel splined hubs are available for extreme outdoor applications, to prevent corrosion on the disc and hub interface.

Series	List Price Adder
81,$000 ; 82,000$ $\& 86,000$	$\$ 1060.00$
87,000	800.00

M43 Viton ${ }^{\circledR}$ Gasket

Gaskets and o-rings in brakes can be provided in Viton ${ }^{\circledR}$ (flourocarbon) material, in place of the standard neoprene. However, the V-wiper steel-backed seals that are used on pull rod manual releases are not available in Viton ${ }^{\circledR}$ and remain as neoprene.
Viton ${ }^{\circledR}$ is a registered trademark name of DuPont.

Series	List Price Adder
81,$000 ; 82,000 ; 86,000$	$\$ 1,060.00$
$87,000^{*}$	$\$ 1,125.00$
56,000	$\$ 950.00$

*Viton ${ }^{\oplus}$ gaskets and o-rings are standard for $87, \mathrm{X} 00$ series, except for hazardous location brakes where Viton ${ }^{\circledR}$ seals are N/A.
${ }^{* *}$ Except series 56,$200 ; 56,700$; \& 56,900 - where Viton gaskets are standard.

M44 Special Friction Disc (per Disc)

Any non-standard friction disc in a brake. Cost is per disc.

Non-standard discs include: hi-inertia friction discs and heavy duty friction discs. Does not include carrier ring friction discs (see M46 and M47).

Series	List Price Adder
87,000	$\$ 50.00$
56,000	45.00

M45 Splined Hub and Friction Disc

Standard on most models. Used for severe duty and reversing applications.

Series	List Price Adder
87,300	No Charge

Series	Torque (lb-ft)	List Price Adder
$87, \mathrm{X00}^{*}$	$6-35 \mathrm{lb}-\mathrm{ft}$	190.00
	$50 \& 75 \mathrm{lb}-\mathrm{ft}$	290.00
	$105 \mathrm{lb}-\mathrm{ft}$	390.00

* Spline is standard on this series. Adder is for pre-revision 24-tooth spline.

M46 Carrier Ring Friction Disc

The friction material is bonded to a steel or zinc/aluminum alloy ring.
This is used for severe duty applications and applications where people are being moved.

Series	Carrier ring material	List Price Adder (per disc)
Horizontal Use Only		
81,000	Steel	700.00
82,000	Steel	700.00
Horizontal or Vertical Use		
$87, X 00 * * ~(n o t ~$ available on 87,300 or 87,800 series	Zinc aluminum alloy	550.00

M47 Carrier Ring Friction Disc (Bronze)

The friction material is bonded to a bronze ring. This is used for severe duty applications and applications where people are being moved.
Horizontal applications only
** Only available with pre-revision design, 24-tooth splined hub, which is included in this price

Series	List Price Adder (per disc)
81,000	$\mathrm{~N} / \mathrm{A}$
82,000	$\$ 1050.00$
86,000	1250.00
$87, \mathrm{X} 00^{* *}$	
$6-35 \mathrm{lb}-\mathrm{ft}$	925.00
$50 \& 75 \mathrm{lb}-\mathrm{ft}$	1850.00
$105 \mathrm{lb}-\mathrm{ft}$	2775.00

M48
 1,08X,000 Series Manual Adjust Mechanism

Excellent for holding applications when disc wear is not a concern. (Not available on hazardous location brakes.)

Series	List Price Adder
87,000	Subtract \$50 List
81,000	
82,000	No Charge
86,000	

M60 Encoders

Internally mounted encoders are available in some series brakes, including some hazardous location brakes. See pages $52-53$ for series availability and additional information.

Maximum Encoder Diameter (in.)	
$1-056$	N/A
$1-087-\mathrm{E} 00$	$2.0^{\prime \prime}$
$1-081 \& 1-082$	$2.5^{\prime \prime}$
$1-086$	$3.5^{\prime \prime}$

The Armature Actuated Brakes are spring-set, electrically released, friction devices, which develop holding and braking torque in the absence of electrical power. This type of brake can decelerate and hold a rotational load or can be ordered to provide a holding function only, where the motor is used as the dynamic brake.
AAB's are available to meet a wide range of braking requirements. Available sizes range from 3 lb -in up to 300 lb -ft static torque, in a variety of mounting options. A short hub is available for face mounting or to provide for maximum space efficiency. Features include Class H magnet wire coils, corrosion resistance, and optional manual release lever. Custom designs and modifications are possible; consult the factory for more information.

Operating Principle

A hub which is attached to the shaft supports the rotatable friction disc. Brake torque is developed when springs apply a clamping force between the brake armature, friction disc and pressure plate. When
electrical power is applied, the armature is pulled by the electromagnetic force in the magnet body assembly which overcomes spring action allowing the friction disc to rotate freely. When electrical power
is interrupted, the electromagnetic force is removed and the pressure spring will mechanically force the armature plate to clamp the friction disc between itself and the pressure plate, thereby torque is developed.

Engaged Condition (power off)

- Compression spring

Disengaged Condition
(power on)

- Compression spring

Series 321 Totally - Pages 73-76 Enclosed Non-ventilated (TENV) \& Series 322 IP54 Enclosure

Sizes from 3 to 72 Ib-in (. 34 to 8.1 Nm) of torque

TENV

Direct mounting to 48 C and 56C motors
Sizes from 1.5 to 25 lb -ft (2 to 34 Nm) of torque

Series 331 \& 333 Pages 79-80, 84
High performance brake for metric/IEC applications.
Direct drop-in for Kebco, Lenze, and Binder.

Sizes ranging from 3 to $300 \mathrm{lb}-\mathrm{ft}$, (4 to 400 Nm) of torque

- Adaptors for NEMA frame sizes 48C through 405TC/UC - Enclosed version available in NEMA 48C through 215TC

Proving Switches Pages 89-93 and AC Rectifiers
Series 331 \& 333 NEMA C-Face

For use with AAB Series 333, 350, and 360

Pages 94-96
AAB Modifications Description, Availability, and Pricing

Select the proper torque rating based on horsepower and rpm (speed at the clutch or brake) using the Torque Selection Chart below. Based on 1.4 service factor.
For other service factors and speeds, use the formulas shown below.

Formula for TABLE 1

$$
\begin{aligned}
& T=\frac{63,025 \times P}{N} \times S F \\
& T=\text { Static torque, lb-in. } \\
& P=\text { Horsepower, hp } \\
& N=\text { Shaft speed at brake, rpm } \\
& S F=\text { Service Factor } \\
& 63,025=\text { Constant }
\end{aligned}
$$

Formula for TABLE 2

$$
T=\frac{5,252 \times P}{N} \times S F
$$

$\mathrm{T}=$ Static torque, lb-ft.
P = Horsepower, hp
$\mathrm{N}=$ Shaft speed at brake, rpm
SF = Service Factor
5,252 $=$ Constant

Caution: Do not use Table 1 to select brakes for overhauling or high inertial loads, or where a stop in specified time or distance is required. For these applications the total inertia of the load and power transmission system must be determined to make a brake selection. Refer to sections on torque and thermal ratings and determination.

NOTE: Series 310 and 311 for holding applications only.

TABLE 1

Series 320, 321, 322 Static Torque in Ib-in. (Nm)

Motor hp	rpm									
	600	800	1000	1200	1500	1800	2000	2400	3000	3600
	Static Torque lb-in (Nm)									
1/20	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	3 (.34)	3 (.34)	3 (.34)	3 (.34)	3 (.34)	3 (.34)
1/12	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	3 (.34)	3 (.34)	3 (.34)
1/8	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)	7 (.79)	3 (.34)
1/6	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)	7 (.79)	7 (.79)
1/4	-	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	7 (.79)
1/3	-	-	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)	18 (2.03)
1/2	-	-	-	-	35 (3.95)	35 (3.95)	35 (3.95)	35 (3.95)	18 (2.03)	18 (2.03)
3/4	-	-	-	-	-	-	35 (3.95)	35 (3.95)	35 (3.95)	35 (3.95)
1	-	-	-	-	-	-	-	-	-	35 (3.95)

TABLE 2
Series 333/350/360 Static Torque in lb-ft. (Nm)

Motor hp (kw)	rpm									
	600	800	1000	1200	1500	1800	2000	2400	3000	3600
	Static Torque lb-ft (Nm)									
1/3 (.25)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)
1/2 (.37)	12 (16)	6 (8)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)
3/4 (.55)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)	3 (4)	3 (4)	3 (4)	3 (4)
1 (.75)	25 (34)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)	6 (8)	3 (4)
1-1/2 (1.1)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)	6 (8)
2 (1.5)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	6 (8)	6 (8)	6 (8)
3 (2.2)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)	12 (16)	12 (16)	12 (16)
5 (3.7)	60 (80)	60 (80)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)	25 (34)	25 (34)	12 (16)
7-1/2 (5.6)	110 (150)	110 (150)	60 (80)	60 (60)	45 (60)	45 (60)	45 (60)	25 (34)	25 (34)	25 (34)
10 (7.5)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	45 (60)	45 (60)	45 (60)	25 (34)	25 (34)
15 (11.2)	300 (400)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	60 (80)	60 (80)	45 (60)	45 (60)
20 (14.9)	300 (400)	180 (240)	180 (240)	180 (240)	110 (150)	110 (150)	110 (150)	60 (80)	60 (80)	60 (80)
25 (18.6)	-	300 (400)	180 (240)	180 (240)	180 (240)	110 (150)	*	*	*	*
30 (22.4)	-	300 (400)	300 (400)	300 (400)	180 (240)	180 (240)	*	*	*	*
40 (29.8)	-	-	300 (400)	300 (400)	300 (400)	180 (240)	*	*	*	*
50 (37.3)	-	-	-	-	300 (400)	300 (400)	*	*	*	*
60 (44.7)	-	-	-	-	300 (400)	300 (400)	*	*	*	*

[^10]

- Torque: 10 to 350 lb -in (1.1 to 39.5 Nm)
- UL Recognized Class H coil insulation system to US Standards (UR) and Canadian National Standards (CUR) - File E125303
- Spring activated and DC voltage released
- High torque, Compact size
- Corrosion resistant finishes
- Standard voltages 24 and 90 Vdc 115 and 230 Vac
- Available voltages 12, 36, 48 and 180 Vdc
- Low inertia rotating parts
- Splined hub for quiet dependable operation
- Holding applications only
- Installation and Service Instructions: P/N 8-078-888-00

Option A, Long Hub

- Provision for (4) B diameter mounting screws on K bolt circle

Dimensional Data

Size	Model Number	Mounting Screw		øC Maximum	D Hub Lengths	E	Hub Location	G	H Overall	J	Mounting Screw thru Mag. Body
		B	K				F				
1.79	310-24010	$\begin{gathered} \# 2 \\ (M 2) \end{gathered}$	$\begin{aligned} & \varnothing 1.640 \\ & (41.656) \end{aligned}$	$\begin{gathered} 5 / 16 \\ (8 m m) \end{gathered}$	$\begin{gathered} .406 \\ (10.31) \end{gathered}$	$\begin{gathered} .560 \\ (14.22) \end{gathered}$	$\begin{gathered} .914 \\ (23.22) \end{gathered}$	$\begin{gathered} \hline 1.185 \\ (30.10) \end{gathered}$	$\begin{gathered} \hline 1.320 \\ (33.53) \end{gathered}$	$\begin{gathered} 1.79 \\ (45.47) \end{gathered}$	$\begin{aligned} & .354 \\ & (9) \end{aligned}$
	310-25010							$\begin{gathered} 1.325 \\ (33.66) \end{gathered}$	$\begin{gathered} \hline 1.470 \\ (37.34) \end{gathered}$		
2.0	310-34010	$\begin{gathered} \hline \# 6 \\ \text { (M3) } \end{gathered}$	$\begin{gathered} \hline \varnothing 1.770 \\ (44.958) \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} .406 \\ (10.31) \end{gathered}$	$\begin{gathered} .425 \\ (10.80) \end{gathered}$	$\begin{gathered} .969 \\ (24.62) \end{gathered}$	$\begin{gathered} \hline 1.190 \\ (30.23) \end{gathered}$	$\begin{gathered} \hline 1.375 \\ (34.93) \end{gathered}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	$\begin{gathered} .845 \\ (21.5) \end{gathered}$
2.87	310-44010	$\begin{gathered} \# 8 \\ \text { (M4) } \end{gathered}$	$\begin{gathered} \hline \varnothing 2.500 \\ (63.500) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} .520 \\ (13.21) \end{gathered}$	$\begin{gathered} .625 \\ (15.88) \end{gathered}$	$\begin{gathered} .927 \\ (20.55) \end{gathered}$	$\begin{gathered} 1.220 \\ (30.99) \end{gathered}$	$\begin{gathered} \hline 1.447 \\ (36.75) \end{gathered}$	$\begin{gathered} 2.87 \\ (72.89) \end{gathered}$	$\begin{aligned} & .750 \\ & (19) \end{aligned}$
3.35	310-54010	$\begin{aligned} & \hline \# 10 \\ & \text { (M5) } \end{aligned}$	$\begin{gathered} \hline \varnothing 2.913 \\ (73.990) \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} .700 \\ (17.78) \end{gathered}$	$\begin{gathered} \hline 1.125 \\ (28.58) \end{gathered}$	$\begin{gathered} 1.213 \\ (30.81) \end{gathered}$	$\begin{gathered} 1.630 \\ (41.40) \end{gathered}$	$\begin{gathered} \hline 1.913 \\ (48.59) \end{gathered}$	$\begin{gathered} \hline 3.35 \\ (85.09) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.086 \\ & (27.6) \end{aligned}$
4.25	310-64010	$\begin{gathered} \hline 1 / 4 \\ (M 6) \end{gathered}$	$\begin{gathered} \hline \varnothing 3.750 \\ (95.250) \end{gathered}$	$\begin{gathered} 7 / 8 \\ (22 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} .700 \\ (17.78) \end{gathered}$	$\begin{gathered} 1.500 \\ (38.10) \end{gathered}$	$\begin{gathered} 1.336 \\ (33.93) \end{gathered}$	$\begin{gathered} 1.752 \\ (44.50) \end{gathered}$	$\begin{aligned} & \hline 2.036 \\ & (51.7) \end{aligned}$	$\begin{gathered} 4.25 \\ (107.95) \end{gathered}$	$\begin{aligned} & \hline 1.085 \\ & (27.6) \end{aligned}$
5.0	310-74010	$\begin{gathered} \hline 1 / 4 \\ (M 6) \end{gathered}$	$\begin{gathered} \hline \varnothing 4.500 \\ (114.300) \end{gathered}$	$\begin{gathered} \hline 15 / 16 \\ (24 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} .800 \\ (20.32) \end{gathered}$	$\begin{gathered} \hline 1.750 \\ (44.45) \end{gathered}$	$\begin{gathered} 1.387 \\ (35.23) \end{gathered}$	$\begin{gathered} \hline 1.905 \\ (48.39) \end{gathered}$	$\begin{gathered} \hline 2.187 \\ (55.55) \end{gathered}$	$\begin{gathered} 5.00 \\ (127.00) \end{gathered}$	$\begin{aligned} & 1.062 \\ & (27) \end{aligned}$

Engineering Specifications/Pricing (Discount Symbol R1)

Size	Part Number	Nominal Static Torque		Friction Material Type	Approximate Weight		Electric Power (watts)	Hub and Disc Inertia		List Price
		lb-in	Nm		lbs	kg		lb-in-sec ${ }^{2}$	kg-cm-sec ${ }^{2}$	
1.79	310-24010-XX-XX	10	1.13	Holding	. 5	0.23	13	1.7275E-05	1.9876E-05	\$492.00
	310-25010-XX-XX	13	1.47							\$532.00
2.0	310-34010-XX-XX	18	2.03	Holding	. 7	. 32	17	1.6150E-05	1.8582E-05	\$588.00
2.87	310-44010-XX-XX	40	4.52	Holding	1.5	. 68	17	1.1150E-04	1.2829E-04	\$656.00
3.35	310-54010-XX-XX	140	15.8	Holding	3	1.36	22	1.6047E-04	1.8464E-04	\$794.00
4.25	310-64010-XX-XX	200	22.5	Holding	4.5	2.04	26	6.4099E-04	7.3751E-04	\$948.00
5.0	310-74010-XX-XX	350	39.5	Holding	6.6	2.99	19	$1.9996 \mathrm{E}-03$	$2.3007 E-03$	\$1,240.00

Ordering Information

310-2 $4010-\underline{0} \mathbf{H}-\mathrm{J}$ A- Options - TABLE 3
Group " 3 " Armature Acting Brake \qquad -

Character	Options	Available by size
0	standard brake	ALL
H	Quiet operation, plastic carrier disc	$\begin{aligned} & 1.79,2.0,2.87 \\ & 3.35^{*}, 4.25^{*} \\ & \hline \end{aligned}$

*With carrier disc option, size 3.35 torque is 50 lb -in holding, and size 4.25 torque is 100 lb -in holding
=Higher Torque (for p/n 310-25010-XX-XX only) 4=Standard Torque
3= Reduced Torque
\qquad

Character to insert	$\begin{array}{\|c\|} \hline \text { Bore } \\ +001 / .001 \end{array}$	Keyway Size		Bores Available (Size)					
		Width inches	Depth inches	1.79	2.0	2.87	3.35	4.25	5.0
OD	1/4	1/16	1/32	X	X				
OF	5/16	1/16	1/32	X	X				
OH	3/8	3/32	3/64	X	X	X			
0 J	1/2	1/8	1/16			X	X		
OL	5/8	3/16	3/32			X	X	X	X
ON	3/4	3/16	3/32					X	X
00	$7 / 8$	3/16	3/32					X	X
OP	15/16	1/4	1/8						X

Coil Voltage 310-2401-0H-*A

Character to insert	Voltage	List Adder	Current Rating in amps					
			$\mathbf{2 . 0}$	$\mathbf{2 . 8 7}$	$3 . \mathbf{3 5}$	$\mathbf{4 . 2 5}$	$\mathbf{5 . 0}$	
C	*12 Vdc	$\$ 40.00$	1.01	1.10	1.29	1.82	1.76	1.26
E	24 Vdc	-	.51	.55	.66	.93	.89	.64
G	*48 Vdc	40.00	.27	.29	.35	.46	.54	.40
J	90 Vdc	-	.13	.14	.16	.23	.22	.16
L	*180 Vdc	40.00	.08	.09	.09	.13	.14	.11
N	115 Vac	30.00	.11	.16	.16	.17	.25	.17
P	230 Vac	30.00	.06	.08	.08	.09	.13	.09

*These voltages are non-standard. Add
$\$ 40.00$ for non-standard coil voltage.
Table 3:
Options 310-24010-0H-J*

Character	Options	Available by size
A	Basic Brake, Magnet Body Mounted, Long Hub	$1.79,2.0,2.87,3.35^{*}$ $4.25^{*}, 5.0^{*}$

*Sizes 3.35, 4.25 and 5.0 have a pass-through hub.

[^11]

- Torque: 75 to 400 lb -in (8.5 to 45.2 Nm)
- UL Recognized Class H coil insulation system to US Standards (UR) and Canadian National Standards (CUR) - File E125303
- Spring activated and DC voltage released
- Corrosion resistant finishes
- Standard voltages 24 and 90 Vdc
- Available voltages 12, 36, 48 and 180 Vdc
- Low inertia rotating parts
- Splined hub for quiet dependable operation
- Holding applications only
- Installation and Service Instructions: P/N 8-078-888-00

Dimensions in Inches (mm)

Size	Model Number	K	N	B	A	AK	ØC Maximum	D Hub Lengths	E	Hub Location F	G	H	J	M
3.38	311-54010	$\begin{gathered} 2.500 \\ (63.500) \end{gathered}$	Qty. 2 (180 ${ }^{\circ}$) apart	$\begin{gathered} \text { \#10-24 } \\ \text { UNC } \end{gathered}$	$\begin{gathered} 3.375 \\ (85.725) \end{gathered}$	-	1.125	$\begin{gathered} 1.00 \\ (25.4) \end{gathered}$	$\begin{gathered} 1.713 \\ (43.51) \end{gathered}$	$\begin{gathered} .30 \\ (7.620) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.999 \\ (50.775) \\ \hline \end{array}$	$\begin{gathered} .383 \\ (9.728) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.380 \\ (85.852) \end{array}$	$\begin{gathered} .360 \\ (9.144) \end{gathered}$
4.75	311-64010	$\begin{gathered} 3.125 \\ (79.375) \end{gathered}$	Qty. 4 (90 $)$ apart	\#10-32 UNF	$\begin{gathered} 4.750 \\ (120.650) \end{gathered}$	$\begin{gathered} 2.750 \\ (69.850) \end{gathered}$	1.375	$\begin{gathered} .562 \\ (14.27) \end{gathered}$	$\begin{gathered} 2.350 \\ (59.690) \end{gathered}$	$\begin{gathered} .16 \\ (4.064) \end{gathered}$	$\begin{gathered} 2.310 \\ (58.670) \end{gathered}$	$\begin{gathered} .493 \\ (12.522) \end{gathered}$	$\left\|\begin{array}{c} 4.750 \\ (120.65) \end{array}\right\|$	$\begin{gathered} .465 \\ (11.811) \end{gathered}$
5.00	311-74010	$\begin{gathered} 4.750 \\ (120.650) \end{gathered}$	Qty. 6 (60 $)$ apart	$1 / 4-20$ UNC	$\begin{gathered} 5.250 \\ (133.35) \end{gathered}$	$\begin{gathered} 3.500 \\ (88.900) \end{gathered}$	1.500	$\begin{gathered} .620 \\ (15.75) \end{gathered}$	$\begin{aligned} & 2.312 \\ & (58.725) \end{aligned}$	$\begin{gathered} .60 \\ (15.240) \end{gathered}$	$\begin{gathered} 2.540 \\ (64.516) \end{gathered}$	$\begin{gathered} .656 \\ (16.662) \end{gathered}$	$\left\lvert\, \begin{gathered} 5.00 \\ (127.00) \end{gathered}\right.$	$\begin{gathered} .625 \\ (15.875) \end{gathered}$

NOTE: Mounting bolt circles, mounting hole thread sizes, and quantity of mounting holes can be changed to meet your requirements. Please contact factory to request mounting dimensions other than those shown here

Engineering Specifications/Pricing (Discount Symbol R1)

Size	Part Number	Nominal Static Torque		Friction Material Type	Approximate Weight		Electric Power (watts)	Hub and Disc Inertia		List Price
		lb-in	Nm		Ibs	kg		lb-in-sec ${ }^{2}$	kg-cm-sec ${ }^{2}$	
3.38	311-54010-XX-XX	75	8.5	holding	2.75	1.25	25	$5.2 \mathrm{E}-04$	5.99E-04	\$872.00
4.75	311-64010-XX-XX	120	13.6	holding	7.00	3.18	30	$1.48 \mathrm{E}-03$	1.71E-03	1,040.00
5.0	311-74010-XX-XX	400	45.2	holding	8.75	3.97	30	1.87E-03	2.16E-03	1,364.00

Ordering Information

Table 1: hub bores 311-64010-** -JA

Character to insert	$\begin{gathered} \text { Bore } \\ +001 / .001 \end{gathered}$	Keyway Size*		$\begin{array}{c}\text { Bores Available } \\ \text { (Size) }\end{array}$		
		Width inches	Depth inches	3.38	4.75	5.0
OB	5/8	3/16	3/32	X	X	
OD	7/8	3/16	3/32	X	X	x
OE	1-1/8	1/4	1/8	X	X	X
OG	1-3/8	1/4	1/8		X	X
OM	1-1/2	1/4	1/8			X
	Metric	mm	mm			
12	12	4	1.8	X		
14	14	5	2.3	X	X	
15	15	5	2.3	X	X	
17	17	5	2.3	X	X	
18	18	6	2.8	X	x	
19	19	6	2.8	X	X	
20	20	6	2.8	x	x	
22	22	6	2.8	X	X	X
23	23	8	3.3	x	X	x
24	24	8	3.3	x	x	X
25	25	8	3.3	X	X	X
26	26	8	3.3	X	x	X
28	28	8	3.3	X	X	x
30	30	8	3.3		x	X
32	32	10	3.3		x	x
34	34	10	3.3		X	X
35	35	10	3.3			X
36	36	10	3.3			X
38	38	10	3.3			X

Table 2:
Coil Voltage 311-6401-0H-*A

Character to insert	Voltage	List Adder
C	$* 12 \mathrm{Vdc}$	$\$ 40.00$
E	24 Vdc	-
G	${ }^{*} 48 \mathrm{Vdc}$	40.00
L	90 Vdc	-

*These voltages are non-standard. Add $\$ 20.00$ for non-standard coil voltage.

Table 3:
Options 311-64010-0H-J*

* Pass-through hub

NOTE: Non-standard bore sizes available, contact factory.
Add $\$ 60.00$ for non-standard bore size.
*Keyseats made to ANSI B17.1 standard.

- Torque rating 3 to 50 lb -in / (. 34 to 5.6 NM)
- UR and CUR Recognized insulation system, E-125303 and sizes 1.8, 2.8 brakes with internal power supply File E-71115
Class B temperature rise with Class H mag wire
- Available with two types of friction disc for holding (H) or dynamic (D) stopping applications
- Corrosion resistance
- Optional "double D" friction discs are available in 3-7 lb-in dynamic and 3-15 lb-in holding brakes. DD shafts fit the brake directly without a brake hub, no shaft keyway cost and simplify assembly
- Optional maintained manual release
- Optional mounting plates to make conversion over to the superior Stearns product easy
- Optional AC Rectifiers - internal or external in-line
- Optional band seal (not available for 1.2 size)
- Installation and Service Instructions: P/N 8-078-889-00

Dimensional Data

Size	Model Number	Mounting Screw			Maximum Shaft Length (Manual Release Units)		Hub Location		E**	G	H Long Hub	H3	H5	J	D Hub Lengths		A
		Qty.	B	K			F	F'							Long	Short	
$\begin{aligned} & 1.2 \mathrm{D} \\ & 1.2 \mathrm{H} \end{aligned}$	$\left\|\begin{array}{l} 3-20-2401 \mathrm{G} \\ 3-20-2501 G \end{array}\right\|$	3	$\begin{gathered} \varnothing .140 \\ \# 4, \# 6 \text { (M3) } \end{gathered}$	$\begin{array}{\|c\|} \hline \varnothing 1.545 \\ (39.243) \end{array}$. 300	(7.62)	.685 (17.40) .860 (21.84)	$\begin{aligned} & .015 \\ & (.381) \end{aligned}$	$\begin{array}{\|c} .410 \\ (10.41) \end{array}$.890 $\frac{(22.60)}{1.065}$ (27.05)	1.065 (27.05) 1.240 (31.50)	$\begin{gathered} 2.5 \\ (63.5) \end{gathered}$	$\left\lvert\, \begin{gathered} .40 \\ (10.16) \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 1.77 \\ (44.96) \end{array}$	$\begin{gathered} .38 \\ (9.65) \end{gathered}$	$\begin{aligned} & .19 \\ & (4.83) \end{aligned}$	$\begin{gathered} 1.925 \\ (48.90) \end{gathered}$
$\begin{aligned} & 1.8 \mathrm{D} \\ & 1.8 \mathrm{H} \end{aligned}$	$\begin{array}{\|l\|} 3-20-4401 G \\ 3-20-4501 G \end{array}$	4	$\begin{gathered} \varnothing .177 \\ \# 6 \text { (M3.5) } \end{gathered}$	$\begin{array}{\|c\|} \varnothing 2.125 \\ (53.975) \end{array}$. 430	(10.92)	$\begin{gathered} .995 \\ (25.27) \end{gathered}$	$\begin{aligned} & .015 \\ & (.381) \end{aligned}$	$\begin{gathered} .450 \\ (11.43) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.260 \\ (32.00) \\ \hline \end{array}$	$\begin{gathered} 1.405 \\ (35.69) \end{gathered}$	$\begin{gathered} 3.775 \\ (95.885) \end{gathered}$	$\begin{gathered} .55 \\ (10.16) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.43 \\ (61.72) \\ \hline \end{array}$	$\begin{gathered} .410 \\ (10.41) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 2.55 \\ (64.77) \end{gathered}$
$\begin{aligned} & \text { 2.0D } \\ & 2.0 \mathrm{H} \end{aligned}$	$\left.\begin{array}{\|c} 3-20-5401 G \\ 3-20-5501 G \end{array} \right\rvert\,$	3	$\begin{gathered} \varnothing .145 \\ \# 6(M 3) \end{gathered}$	$\left\|\begin{array}{c} \varnothing 2.220 \\ (56.388) \end{array}\right\|$. 430	(10.92)	$\begin{gathered} .933 \\ (23.70) \end{gathered}$	$\begin{aligned} & .015 \\ & (.381) \end{aligned}$	$\begin{array}{\|c\|} \hline .530 \\ (13.46) \end{array}$	$\begin{gathered} 1.190 \\ (30.23) \end{gathered}$	$\begin{gathered} 1.623 \\ (41.22) \end{gathered}$	$\begin{gathered} 3.775 \\ (95.885) \end{gathered}$	$\begin{gathered} .55 \\ (10.16) \end{gathered}$	$\begin{gathered} 2.50 \\ (63.5) \end{gathered}$	$\begin{gathered} .69 \\ (17.53) \end{gathered}$	$\begin{gathered} .31 \\ (7.87) \end{gathered}$	$\begin{gathered} 2.50 \\ (63.50) \end{gathered}$
$\begin{aligned} & 2.8 \mathrm{D} \\ & 2.8 \mathrm{H} \end{aligned}$	$\left\|\begin{array}{l} 3-20-7401 G \\ 3-20-7501 G \end{array}\right\|$	4	$\begin{gathered} \varnothing .188 \\ \# 8(M 4) \end{gathered}$	$\begin{aligned} & \varnothing 2.844 \\ & (72.738) \end{aligned}$. 490	(12.45)	$\begin{array}{\|l\|} \hline .954 \\ (24.23) \end{array}$	$\begin{aligned} & .050^{*} \\ & (1.27) \end{aligned}$	$\begin{array}{\|c\|c} 1.10 \\ (27.94) \end{array}$	$\begin{gathered} 1.415 \\ (35.94) \end{gathered}$	$\begin{gathered} 1.364 \\ (34.64) \end{gathered}$	$\begin{array}{\|c} 4.5 \\ (95.885) \end{array}$	$\begin{gathered} .55 \\ (10.16) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.25 \\ (82.55) \end{array}$	$\begin{array}{\|c} .410 \\ (10.41) \end{array}$	*	$\begin{array}{\|c\|} \hline 3.32 \\ (84.33) \end{array}$

[^12]** No thru bore with manual release option.

Engineering Specifications/Pricing (Discount Symbol R2)

Size	Part Number	Nominal Static Torque		Friction Material	Approx Weight		Electric Power	Hub and Disc Inertia	Thermal Capacity	$\begin{aligned} & \text { Maximum } \\ & \text { Bore } \end{aligned}$		List Price Vdc		Options List Price Adders			
				Std Brake			With manual Release					Double "D" friction disc	Carrier ring friction disc	Brake release indicator	Band seal		
		lb-in	Nm		Type	lbs		kg	(watts)	oz-in-sec ${ }^{2}$	HP-sec/min					in	mm
1.2D	3-20-2401G-XX-XX	3	. 34	Dynamic	. 4	. 181	7	7.02×10^{-5}	Consult Factory	3/8	9	\$180	\$230	No charge	\$20	\$80	N/A
$1.2 \mathrm{H}^{(1)}$	3-20-2501G-XX-XX	$5{ }^{11}$. 56	Holding ${ }^{(1)}$	4	. 181	9	7.02×10^{-5}		3/8	9	190	240	No charge	Not available	80	N/A
1.8D	3-20-4401G-XX-XX	7	. 79	Dynamic	1.1	. 499	10	4.8×10^{-4}	. 26	1/2 ${ }^{(2)}$	12	200	260	No charge	20	80	\$16
$1.8 \mathrm{H}^{(1)}$	3-20-4501G-XX-XX	$15{ }^{1}$	1.69	Holding ${ }^{(1)}$	1.1	. 499	10	4.8×10^{-4}		$1 / 22^{2}$	12	230	290	No charge	20	80	16
1.8D	3-20-4601G-XX-XX	15	1.69	Dynamic	1.1	. 499	10	4.8×10^{-4}		1/2 ${ }^{\text {2 }}$	12	250	310	Not available	Not available	80	16
2.0D	3-20-5401G-XX-XX	18	2.03	Dynamic	1.2	. 544	12.5	2.23×10^{-3}	. 32	1/2	12	230	290	Not available	20	80	16
$2.0 \mathrm{H}^{(1)}$	3-20-5501G-XX-XX	30^{11}	3.39	Holding ${ }^{(1)}$	1.2	. 544	12.5	2.23×10^{-3}		1/2	12	270	330	Not available	20	80	16
2.8 D	3-20-7401G-XX-XX	35	3.95	Dynamic	2.0	. 91	17	2.3×10^{-3}	. 17	$1 / 2^{(2)}$	12	310	370	Not available	20	80	22
$2.8 \mathrm{H}^{(1)}$	3-20-7501G-XX-XX	$50{ }^{1}$	5.65	Holding ${ }^{(1)}$	2.0	. 91	17	2.3×10^{-3}		$1 / 2{ }^{(2)}$	12	350	410	Not available	Not available	80	22

${ }^{(1)}$ For holding applications only. ${ }^{(2)}$ Set Screws located 120° from keyway.

Ordering Information

Table 1: 320-44010-** -JD

Characters to insert	Bore	Keyway Size*		Bores Available			
		Width (in.) x Depth (in.)		Mag Body Size			
				1.2	1.8	2.0	2.8
OA	3/16	N/A	N/A	X			
OB	3/16	1/16	1/32		X		
OC	1/4	N/A	N/A	X			
OD	1/4	1/16	1/32		X	X	X
OE	5/16	N/A	N/A	X			
OF	5/16	1/16	1/32		X	X	X
OG	3/8	N/A	N/A	X			
OH	3/8	3/32	3/64		X	X	X
0 J	1/2	1/8	1/16		(1)	(1)	(1)
05	5	2 mm	1 mm	(2)	X	X	X
06	6	2 mm	1 mm	(2)	X	X	X
07	7	2 mm	1 mm	(2)	X	X	X
08	8	2 mm	1 mm	(2)	X	X	x
09	9	3 mm	1.4 mm	(2)	X	X	X
10	10	3 mm	1.4 mm		X	X	X
11	11	4 mm	1.8 mm		X	X	X
12	12	4 mm	1.8 mm		X	X	X

NOTE: For non-standard bores add $\$ 64.00$.
(1) Set screws located 120° from keyway.
(2) Hubs are provided without keyway.
*Keyseats made to ANSI B17.1 standard.

Table 1A: 320-44010-** -JX
(Double "D" Bores)

Characters to insert	Bore	Bores Available	
		$\mathbf{y y}$	$\mathbf{M a g}$ Body Size
OF	$5 / 16$	$\mathbf{1 . 8 H}$	
OH	$3 / 8$	X	X

NOTE: Can be used up to 15 lb -in for holding.
able 3:
Options 320-44010-0H-J*

Characters	Options
A	Basic Brake, Magnet Body Mounted, Long Hub
D^{*}	Basic Brake, Pressure Plate Mounted, Short Hub*
G^{*}	Short Hub, Pressure Plate Mounted with Maintained Manual Release*
H	Long Hub with Maintained Manual Release, Size 2.8 Only
X	Double "D" Friction Disc, 1.2H, 1.2D, 1.8H
Y	Option X with Maintained Manual Release Pressure Plate Mounted

*Short hub not required for size 2.8 pressure plate mount.
NOTE: Final part number may change due to specifications or options selected or other product design considerations. A number such as a 2, 3, 4 etc., in the $12^{\text {th }}$ position is used to designate a unique brake (custom) and can only be assigned by Stearns Design Engineering Department.
Modifications are available - see AAB Modification Section.

Totally Enclosed Non-Ventilated (TENV) Direct-Acting Brake - Quiet Operation

- Torque Rating: 3 lb-in through 72 lb-in
- Enclosure Rating: 321 Series IP42 322 Series IP54
- UR and CUR recognized insulation system - File E-125303; and sizes 1.8 \& 2.8 brakes and 48C \& 56C motor frame brakes with internal power supply File E-71115
- Class B temperature rise with Class H mag wire
- Pressure plate mount
- Installation and Service Instructions: P/N 8-078-901-00
- Optional: Optional "double D" friction discs are available in 3-7 lb-in dynamic and 3-15 lb-in holding brakes. DD shafts fit the brake directly without a brake hub, no shaft keyway cost and simplify assembly
- Optional: Maintained manual release lever, or non-maintained pull release
- Optional: Through-shaft
- Optional: AC Rectifiers - Internal, or external in-line (availability depends on size)

Size 2.8

Dimensions in Inches (millimeters)

Size	Nomina	Torq	Basic Model Number	A	H	D		Hub Location	Hub Length
	Lb-in	Nm				Series	Mag Body \varnothing		
1.2 Dynamic	3	. 34	3-21-24	$\begin{gathered} .904 \\ (22.962) \end{gathered}$	$\begin{gathered} .12 \\ (3.05) \end{gathered}$	321	1.77 (44.96)	. 02 (.51)	$\begin{gathered} .19 \\ (4.83) \end{gathered}$
			3-22-24			322	1.875 (47.625)	. 05 (1.27)	
1.2 Holding	5	. 56	3-21-25	$\begin{gathered} 1.080 \\ (27.432) \end{gathered}$		321	1.77 (44.96)	. 02 (.51)	
			3-22-25			322	1.875 (47.625)	. 05 (1.27)	
1.8 Dynamic	7	. 79	3-21-44	$\begin{gathered} 1.296 \\ (32.918) \end{gathered}$	$\begin{gathered} .12 \\ (3.05) \end{gathered}$	321	$\begin{gathered} 2.50 \\ (63.50) \end{gathered}$. 02 (.51)	
			3-22-44			322		. 05 (1.27)	
1.8 Holding	15	1.69	3-21-45			321		. 02 (.51)	. 25
			3-22-45			322		. 05 (1.27)	(6.35)
1.8 Dynamic	15	1.69	3-21-46			321		. 02 (.51)	
			3-22-46			322		. 05 (1.27)	
2.8 Dynamic	35	3.95	3-21-74	-	-	321	3.66 (92.96)	. 100 (2.54)	
			3-22-74			322		. 125 (3.18)	(6.35)
2.8 Dynamic	50	5.65	3-21-75	-	-	321	3.66 (92.96)	. 100 (2.54)	. 25
			3-22-75			322		. 125 (3.18)	(6.35)
2.8 Holding	72	8.14	3-21-77	-	-	321	3.66 (92.96)	. 100 (2.54)	$\begin{gathered} \hline .25 \\ (6.35) \end{gathered}$
			3-22-77			322		. 125 (3.18)	

Specifications

Size	Basic Model Number	Nominal Static Torque Lb-in (Nm)	Approx. Weight		Power (watts)	Hub and Disc inertia (Oz-in-sec ${ }^{2}$)	Thermal Capacity HP-sec/min	Maximum Bore Size	
			Ibs	kg				in	mm
1.2 Dynamic	3-2X-24	3 (.34)	. 4	. 18	7	7.02×10^{-3}	Consult Factory	3/8	9
1.2 Holding	3-2X-25	5 (.56)			9				
1.8 Dynamic	3-2X-44	7 (.79)	1.3	. 59	10	4.8×10^{-4}	. 26	1/2**	12**
1.8 Holding	3-2X-45	15 (1.69)							
1.8 Dynamic	3-2X-46	15 (1.69)							
2.8 Dynamic	3-2X-74	35 (3.95)	2.0	. 91	17	2.3×10^{-3}	. 17	1/2	12
2.8 Dynamic	3-2X-75	50 (5.65)	2.0	. 91	17	2.3×10^{-3}		1/2	12
2.8 Holding	3-2X-77	72 (8.14)	2.0	. 91	22	2.3×10^{-3}		1/2	12

[^13]
THROUGH-SHAFT OPTION

SIZE 1.2 \& 1.8
Optional through-shaft - No manual release option
SIZE 2.8
Optional through-shaft

DOUBLE - D DISC OPTION

Double "D" Option

Hubless option with flatted shaft double " D " friction disc

Brake Size	A	B
1.2	$.25+.05 /-.00$.075 max.
1.8	$.30+.13 /-.00$.075 max.

Shaft Size	C	D	E
$5 / 16$.052	$.105 / .103$	$.3135 / .3115$
$3 / 8$.063	$.126 / .124$	$.376 / .374$

NOTE: Contact factory for Double " D " disc on brakes greater than 7 lb -in nominal static torque

AC RECTIFIERS

Internal rectifier is available only on the 1.8 and 2.8 models. external in-line rectifier is a standard option only on the 1.2 model.

NON-MAINTAINED MANUAL RELEASE

BRAKE RELEASE INDICATOR

A mechanical switch which is activated by the manual release lever, and can be used to disconnect power in case of accidental start-up when the brake is manually released.

Pricing (Discount Symbol R2)

Size	321 Series Model External leads*		321 Series List Price DC		322 Series Model External Leads* Mounting		322 Series List Price DC		Options List Price Adders			
	Mounting		Standard Brake	With manual release			Standard Brake	With manual release	Double "D" disc	Carrier ring disc	Release indicator switch	Throughshaft
	Inside***	Flange			Inside***	Flange						
1.2 Dynamic	3-21-2401G	3-21-2403G	\$190	\$240	3-22-2401G	N/A**	\$210	\$260	N/C**	\$20	\$80	\$10
1.2 Holding	3-21-2501G	3-21-2503G	200	250	3-22-2501G	N/A**	220	270	N/C**	N/A	80	10
1.8 Dynamic	3-21-4401G	3-21-440DG	220	280	3-22-4401G	3-22-440DG	242	302	N/C**	20	80	10
1.8 Holding	3-21-4501G	3-21-450DG	250	310	3-22-4501G	$3-22-450 \mathrm{DG}$	276	336	N/C**	20	80	10
1.8 Dynamic	3-21-4601G	3-21-460DG	270	325	3-22-4601G	3-22-460DG	296	356	N/A**	N/A**	80	10
2.8 Dynamic	3-21-7401K	N/A**	340	400	3-22-7401K	N/A**	374	434	N/A**	N/A**	80	10
2.8 Dynamic	3-21-7501K	N/A**	380	440	3-22-7501K	N/A**	414	474	N/A**	N/A**	80	10
2.8 Holding	3-21-7701K	N/A**	410	470	3-22-7701K	N/A**	450	510	N/A**	N/A**	80	10
	72 mm mount				72 mm mount							
2.8 Dynamic	3-21-740MK	N/A**	\$340	\$400	3-22-740MK	N/A**	\$374	\$434	N/A**	N/A**	\$80	\$10
2.8 Holding	3-21-750MK	N/A**	380	440	3-22-750MK	N/A**	414	474	N/A**	N/A**	80	10

**N/C =No charge N/A =Not Available
${ }^{* * *}$ Mounting bolt circle inside (less than) the outside diameter of magnet body. (BC dimensions shown on page 71)

Ordering Information

Group "3" Armature Actuated Brakes Series $=321$ or 322			-3-2X-XXXXX-XX-X X—— Options - Table 3										
					- Voltages - Table 2								
					Hub Bore and Keyway - Table 1 For Double "D" Bores See Table 1A								
	Character	Size					haracter	Modification					
	2 4 7	1.2 1.8 2.8					E F G J	Brake release indicator (NC) Brake release indicator (NO) Standard - GGA Friction Material CCW manual release rotation "Star" hub and GGA disc size 2.8 Carrier ring friction disc size 1.8					
Static Torque (lb-in)	e ${ }^{\text {Numeral }}$						$\begin{aligned} & \mathrm{K} \\ & \mathrm{~S} \end{aligned}$						
3 Dynamic 5 Holding	4				Numeral or Letter		I Mounting		Brake Size				
7 Dynamic	4						1.2	1.8	2.8				
15 Holding	5	Numeral or Letter	Description	Series		1			Inside Mount		x	x	x
35 Dynamic	4					D	Flange Mount $2.844^{\prime \prime}$ Mounting Bolt Circle		\mathbf{x}	\mathbf{x}			
50 Dynamic	5	0	External Lead Location	321, 322					x	x			
72 Holding	7	A	Internal Lead Location*	321 or 322	3		Flange Mount 2.125" Mounting Bolt Circle		x				
		6	$\begin{array}{\|l\|} \hline \text { External leads } \\ \text { Thru-Shaft } \\ \hline \end{array}$	321		M	Body Mount 72 mm Mounting Bolt Circle				x		
Size		C	Internal Leads* Thru-Shaft	321									

Table 1: Bore Size

Characters to Insert	Bore	Keyway Size*		Bores Available		
		$\begin{aligned} & \text { Width (in.) } x \\ & \text { Depth (in.) } \end{aligned}$		Mag Body Size		
				1.2	1.8	2.8
0A	3/16	no ke	yway	x		
OB	3/16	1/16	1/32		x	
OC	1/4	no ke	yway	x		
0D	1/4	1/16	1/32		x	x
OE	5/16	no ke	yway	x		
0F	5/16	1/16	1/32		x	x
0G	3/8	no ke	yway	x		
OH	3/8	3/32	3/64		x	x
0 J	1/2	1/8	1/16		(1)	x
05	5	2 mm	1 mm	(2)	x	x
06	6	2 mm	1 mm	(2)	x	x
07	7	2 mm	1 mm	(2)	x	x
08	8	2 mm	1 mm	(2)	x	x
09	9	3 mm	1.4 mm	(2)	x	x

NOTE: For non-standard bores add $\$ 64.00$.
(1)Set Screws located 120° from keyway (2) Hubs are provided without keyway *Keyseats made to ANSI B17.1 standard

Table 1A:

(Double "D" Bores)	
$\begin{array}{c}\text { Characters } \\ \text { to Insert }\end{array}$ 0 F 0 H	$3 / 16$

NOTE: Contact factory for Double "D" disc on brakes greater than 7 lb -in nominal static torque. Can be used up to 15 lb -in holding.

Table 3: Options

Characters to Insert	Options
D	Short Hub pressure plate mounted
G	Short Hub with Maintained Manual Release
X	Double " "D" Friction Disc
Y	Option X with Maintained Manual Release

NOTE: Final part number may change due to specifications or options selected or other product design considerations. A number such as a 2, 3, 4 etc., in the $12^{\text {th }}$ position is used to designate a unique brake (custom) and can only be assigned by Stearns Design Engineering Department.
Modifications are available - see AAB Modification Section.

Character to Insert	Voltage	List Adder	Current Rating in Amps		
			Size 1.2	Size 1.8	Size 2.8
C	12 Vdc	-	. 632	. 826	1.37
E	24 Vdc	-	. 307	. 421	. 70
G	48 Vdc	-	. 158	. 216	. 36
J	90 Vdc	-	. 076	. 123	. 17
K	103 Vdc	-	. 090	. 115	. 150
L	180 Vdc	-	. 051	. 060	. 090
N	115 Vac external in-line	\$50.00	. 090	N/A	N/A
P	230 Vac external in-line	\$50.00	. 044	N/A	N/A
T*	115 Vac Internal Rectifier	\$30.00	N/A	. 115	.168*
U*	230 Vac Internal Rectifier	\$30.00	N/A	. 059	.086*
V	115 Vac external in-line QuickSet	\$80.00	. 090	. 115	. 168
W	230 Vac external in-line QuickSet	\$80.00	. 044	. 059	. 086
Z	115/230 Vac external in-line	\$50.00	. 090	. 115	. 168

*Internal rectifier not available on size 2.8 brake with 72 mm bolt circle and 1.2 brake

NOTE: Other voltages available, contact factory. Add $\$ 40.00$ for nonstandard voltages
NOTE: $65^{\circ} \mathrm{C}$ maximum ambient temperature for all external in-line rectifiers

High Cycling Brake

Direct mounting to 48C and 56C motors

Features

- TENV totally-enclosed non-ventilated

Series 321= IP42 Enclosure, Series 322 = IP54 Enclosure

- Out-of-box torque - No burnishing required
- Class B temperature rise with class H mag wire
- Brake housing integrated with mag body creating a heat exchanger that keeps the brake coil cool

- Field replaceable coil
- Splined hub and friction disc

Options

- Internal rectifier
- Quick-set rectifiers - for fast response time even when wired directly across motor
- Maintained manual release
- Brake release indicator switch
- Single point torque adjustment- to 50% of nameplate torque
- Through-shaft
- Conduit box
- Quiet armature actuations
- Carrier ring friction disc

Engineering Specifications/Pricing (Discount Symbol R2)

Motor Frame	321 Series Model Number	Nominal Static Torque Lb-ft (Nm)	List Price		322 Series Model Number	List Price		Approx. Weight		Power (watts)	Hub and Disc inertia (Oz-in-sec ${ }^{2}$)
			Standard Brake	With manual release		Standard Brake	With manual release	Ibs	kg		
48C	3-21-83XF	1.5 (2)	\$720.00	\$780.00	3-22-83XF	\$976.00	\$1,036.00	9.5	4.3	20	1.2×10^{-2}
	3-21-84XF	3 (4)	720.00	780.00	3-22-84XF	976.00	1,036.00				
	3-21-85XF	6 (8)	764.00	824.00	3-22-85XF	1,018.00	1,078.00				
	3-21-86XF	8.3 (11)	794.00	854.00	3-22-86XF	1,050.00	1,110.00				
56C	3-21-93XG	3 (4)	\$896.00	\$976.00	3-22-93XG	\$1,080.00	\$1,160.00	23	10.4	31	15.5×10^{-2}
	3-21-94XG	6 (8)	1,090.00	1,170.00	3-22-94XG	1,262.00	1,342.00				
	3-21-95XG	10 (14)	1,266.00	1,346.00	3-22-95XG	1,428.00	1,508.00				
	3-21-96XG	15 (20)	1,430.00	1,510.00	3-22-96XG	1,582.00	1,662.00				
	3-21-98XG	25 (34)	1,642.00	1,722.00	3-22-98XG	1,780.00	1,860.00				

Ordering Information

Character	NEMA frame
8	48 C
9	56 C

48C	
Torque $=$ 5th digit	Nominal Static Torque Lb-ft (Nm)
3	$1.5(2)$
4	$3(4)$
5	$6(8)$
6	$8.3(11)$

56 C	
Torque $=$ 5th digit	Nominal Static Torque Lb-ft $(N m)$
3	$3(4)$
4	$6(8)$
5	$10(14)$
6	$15(20)$
8	$25(34)$

Lead location \& options = 6th digit	Description	List Price Adder	
		48C	56C
0	External leads	-	-
6	External leads \& through shaft	\$344.00	\$344.00
A	Internal leads	-	-
C	Internal leads \& through shaft	\$344.00	\$344.00

Table 2: Standard Coil Voltage

Character to Insert	Voltage	List Adder	Current Rating in Amps	
			56 C	
C	12 Vdc	-	1.47	2.44
E	24 Vdc	-	.75	1.26
G	48 Vdc	-	.38	.647
J	90 Vdc R	-	.23	.393
460 Vac Half Wave Internal	$\$ 50.00$.50	.50	
V	115 Vac Internal QuickSet	$\$ 160.00$.25	.40
W	230 Vac Internal QuickSet	$\$ 160.00$.25	.40

Other voltages available. Add $\$ 188.00$ for non-standard voltage.

Table 3: Options

Characters to Insert	Options
D	Standard Brake G
With Maintained Manual Release	

NOTE: Final part number may change due to specifications or options selected or other product design considerations. A number such as a $2,3,4$ etc., in the $12^{\text {th }}$ position is used to designate a unique brake (custom) and can only be assigned by Stearns Design Engineering Department.
Modifications are available - see AAB Modification Section.

Direct Replacement for European Brakes - *Kebco, Lenze, and Binder

The 33X Series have the following design features:

- Direct Acting
- Torque rating 3 to 300 lb -ft (4 to 400 NM)
- UL Recognized Class H coil insulation system to US Standards (UR) and Canadian National Standards (CUR) File E125303
- Spring-set and DC voltage released AC rectifiers optional
- Series 333 torque adjustable
- Pre-adjusted air gap for easy assembly
- Corrosion resistance
- Spline hub for quiet dependable operation
- Metric and US Customary bore sizes

Product Overview

Options:

- AC rectifiers (full and half wave) See pages 86-89 for rectifier specifications
- Band seal (boot)
- Tach/encoder Mounting
- Manual release - NonMaintained or Maintained
- Shaft seal
- Mounting flange
- Electronic brake release indicator switch

333 Series

Static torque from 3 to $300 \mathrm{lb}-\mathrm{ft}$, with nine different sizes ranging from 72 mm bolt circle up to 278 mm bolt circle.
Torque can be adjusted down to approximately 50% of the nameplate torque rating.
Shown here with optional nonmaintained manual release lever; other options include boot (band seal), end cap plug, through-shaft seal, and many more listed in the AAB Modification Section.

331 Series

Basic brake without the torque adjust option.
Available in torque ratings from 3 to $300 \mathrm{lb}-\mathrm{ft}$ (4 to 400 Nm).
Manual release optional, can be provided with non-maintained release lever or maintained release bolts.
Metric mount; also can be ordered with Cface adaptor or as the C-face Enclosed version,
 and as Severe Duty.

33X Series with C-face Adaptor

Series 331or Series 333 can be provided with a C-face adaptor for motor frames from 48C through 404/405TC, TSC, UC, USC.
All other available modifications for the $33 X$ Series can be ordered for this brake.

33X Series Enclosed

Series 33 X with a C-face adaptor and a brake housing. Order as an IP43 Enclosure with or without external manual release:
33B Series for brake without torque adjust 33C Series for brake with torque adjust
OR IP54 Enclosure with the option of internal maintained manual release:
33H Series for brake without torque adjust 33J Series for brake with torque adjust

Also Available.....

330 Series

Magnet body is not machined for a manual release option. See ordering information for the 33X Series brakes.

33X Severe Duty

Any of the 33X Series can be ordered as Severe Duty, appropriate for high-cycle rate applications. See ordering information for the 33 X series brakes.

332 Series

Basic brake with the torque adjust option, and the magnet body not machined for the manual release option. See ordering information for the $33 X$ series brakes.

[^14]

Size	Basic Model Number	Torque lb-ft (Nm)	$\begin{gathered} \text { D1 } \\ \text { Max } \end{gathered}$	\varnothing B	X			\varnothing E		AG Set screw location English bores only	A			H		D	\varnothing K	$\begin{gathered} \mathrm{N} \\ 333 \\ \text { Series } \\ \text { only } \end{gathered}$	n torque adjust bolts 333 series only
					Min. Bore	Max. Bore					Thick Plate	Thin Plate	No Plate	Thick Plate	Thin Plate				
72	33X-14010	3 (4)	$\begin{aligned} & 3.56 \\ & 90.4 \end{aligned}$	$3 \times M 4$	$\begin{gathered} \hline 3 / 8 \\ 9^{*} \end{gathered}$	$\begin{gathered} 9 / 16 \\ 15 \end{gathered}$	$\begin{gathered} 0.709 \\ 18 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.183 \\ 30 \end{array}$	$\begin{gathered} 0.070 \\ 1.78 \end{gathered}$	$\begin{aligned} & .355 \\ & 9.02 \end{aligned}$	$\begin{aligned} & 2.016 \\ & 51.20 \end{aligned}$	$\begin{aligned} & \hline 1.838 \\ & 46.68 \end{aligned}$	$\begin{aligned} & \hline 1.780 \\ & 45.20 \end{aligned}$	$\begin{gathered} 0.236 \\ 6 \end{gathered}$	$\begin{gathered} 0.058 \\ 1.47 \end{gathered}$	$\begin{array}{\|c\|} \hline 3.346 \\ 85 \end{array}$	$\begin{array}{\|c\|} \hline 2.835 \\ 72 \end{array}$	$\begin{gathered} 0.257 \\ 6.52 \end{gathered}$	3
90	33X-24010	6 (8)	$\begin{array}{c\|} \hline 4.48 \\ 113.8 \end{array}$	$3 \times \mathrm{M} 5$	$\begin{gathered} \hline 1 / 2 \\ 9^{*} \end{gathered}$	$\begin{gathered} 3 / 4 \\ 16,20^{\star *} \end{gathered}$	$\begin{array}{\|c} \hline 0.787 \\ 20 \end{array}$	$\begin{array}{\|c\|} \hline 1.183 \\ 30 \end{array}$	$\begin{gathered} 0.070 \\ 1.78 \end{gathered}$	$\begin{gathered} \hline .394 \\ 10.01 \end{gathered}$	$\begin{aligned} & \hline 2.275 \\ & 57.78 \end{aligned}$	$\begin{aligned} & \hline 2.057 \\ & 52.24 \end{aligned}$	$\begin{aligned} & \hline 1.999 \\ & 50.77 \end{aligned}$	$\begin{gathered} 0.276 \\ 7 \end{gathered}$	$\begin{gathered} 0.058 \\ 1.47 \end{gathered}$	$\begin{array}{\|c\|} \hline 4.016 \\ 102 \end{array}$	$\begin{gathered} 3.543 \\ 90 \end{gathered}$	$\begin{gathered} \hline 0.257 \\ 6.52 \end{gathered}$	4
112	33X-34010	12 (16)	$\begin{array}{\|c\|} \hline 5.39 \\ 136.9 \end{array}$	$3 \times M 6$	$\begin{aligned} & 5 / 8 \\ & 10^{\star} \end{aligned}$	$\begin{array}{c\|} \hline 7 / 8 \\ 22,24^{\star *} \end{array}$	$\begin{gathered} 0.787 \\ 20 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.262 \\ 32 \end{array}$	$\begin{gathered} 0.105 \\ 2.67 \end{gathered}$	$\begin{aligned} & .393 \\ & 9.98 \end{aligned}$	$\begin{aligned} & 2.771 \\ & 70.38 \end{aligned}$	$\begin{aligned} & \hline 2.475 \\ & 62.86 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.417 \\ 61.38 \end{array}$	$\begin{array}{\|c\|} \hline 0.354 \\ 9 \end{array}$	$\begin{array}{c\|} \hline 0.058 \\ 1.47 \end{array}$	$\begin{array}{c\|} \hline 5.000 \\ 127 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.409 \\ 112 \end{array}$	$\begin{gathered} 0.287 \\ 7.29 \end{gathered}$	3
132	33X-44010	25 (32)	$\begin{gathered} 6.19 \\ 157.2 \end{gathered}$	$3 \times \mathrm{M} 6$	$\begin{aligned} & 7 / 8 \\ & 14^{*} \end{aligned}$	$\begin{gathered} 1-1 / 8 \\ 25,28^{\star *} \end{gathered}$	$\begin{gathered} 0.984 \\ 25 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.380 \\ 35 \end{array}$	$\begin{gathered} 0.105 \\ 2.67 \end{gathered}$	$\begin{gathered} .492 \\ 12.50 \end{gathered}$	$\begin{aligned} & 3.001 \\ & 76.23 \end{aligned}$	$\begin{aligned} & \hline 2.705 \\ & 68.71 \end{aligned}$	$\begin{array}{l\|} \hline 2.647 \\ 67.23 \end{array}$	$\begin{gathered} 0.354 \\ 9 \end{gathered}$	$\begin{gathered} 0.058 \\ 1.47 \end{gathered}$	$\begin{array}{\|c\|} \hline 5.787 \\ 147 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.197 \\ 132 \\ \hline \end{array}$	$\begin{gathered} 0.327 \\ 8.30 \end{gathered}$	4
145	33X-54010	45 (60)	$\begin{gathered} 6.81 \\ 173 \end{gathered}$	$3 \times M 8$	$\begin{aligned} & 7 / 8 \\ & 14^{\star} \end{aligned}$	$\begin{gathered} 1-1 / 8 \\ 30,34^{\star *} \end{gathered}$	$\begin{array}{\|c} \hline 1.181 \\ 30 \end{array}$	$\begin{array}{\|c\|} \hline 1.577 \\ 40 \end{array}$	$\begin{gathered} 0.130 \\ 3.30 \end{gathered}$	$\begin{gathered} .590 \\ 14.99 \end{gathered}$	$\begin{aligned} & \hline 3.696 \\ & 93.88 \end{aligned}$	$\begin{aligned} & \hline 3.321 \\ & 84.35 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.263 \\ 82.88 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.433 \\ 11 \end{array}$	$\begin{array}{\|c\|} \hline 0.058 \\ 1.47 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.457 \\ 164 \end{array}$	$\begin{array}{\|c\|} \hline 5.709 \\ 145 \\ \hline \end{array}$	$\begin{gathered} \hline 0.366 \\ 9.30 \end{gathered}$	4
170	33X-64010	60 (80)	$\begin{gathered} 7.80 \\ 198 \end{gathered}$	$3 \times \mathrm{M8}$	$\begin{gathered} \hline 1-1 / 8 \\ 15^{\star} \end{gathered}$	$\begin{gathered} 1-3 / 8 \\ 35,38^{\star *} \end{gathered}$	$\begin{gathered} 1.181 \\ 30 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.852 \\ 47 \end{array}$	$\begin{gathered} 0.133 \\ 3.38 \end{gathered}$	$\begin{gathered} \hline .590 \\ 14.99 \end{gathered}$	$\begin{aligned} & 3.781 \\ & 96.04 \end{aligned}$	$\begin{aligned} & \hline 3.406 \\ & 86.51 \end{aligned}$	$\begin{array}{l\|} \hline 3.348 \\ 85.04 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.433 \\ 11 \end{array}$	$\begin{array}{c\|} \hline 0.058 \\ 1.47 \end{array}$	$\begin{gathered} 7.480 \\ 190 \end{gathered}$	$\begin{array}{\|c\|} \hline 6.693 \\ 170 \end{array}$	$\begin{gathered} 0.380 \\ 9.65 \end{gathered}$	4

Size	Basic Model Number	d1	d2	d3	d5	d6	h1			h2 (1)	h3 (1)	h4	w1
							Thick Plate	Thin Plate	No Plate				
72	33X-14010	$\begin{array}{\|c\|} \hline 0.787 \\ 20 \end{array}$	$\begin{gathered} 1.181 \\ 30 \end{gathered}$	$\begin{gathered} 0.177 \\ 4.5 \end{gathered}$	$\begin{gathered} 0.177 \\ 4.5 \end{gathered}$	$\begin{gathered} 3.268 \\ 83 \end{gathered}$	$\begin{gathered} 0.905 \\ 23 \end{gathered}$	$\begin{aligned} & 0.727 \\ & 18.47 \end{aligned}$	$\begin{gathered} 0.669 \\ 17 \end{gathered}$	$\begin{aligned} & 2.05 \\ & 52.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.85 \\ 97.8 \end{array}$	$\begin{aligned} & 1.00 \\ & 25.4 \end{aligned}$	$\begin{array}{\|c\|} \hline 17.5 \\ 444.5 \end{array}$
90	33X-24010	$\begin{array}{\|c\|} \hline 1.181 \\ 30 \end{array}$	$\begin{gathered} 1.772 \\ 45 \end{gathered}$	$\begin{gathered} 0.217 \\ 5.5 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.217 \\ 5.5 \end{array}$	$\begin{gathered} 3.937 \\ 100 \end{gathered}$	$\begin{gathered} 0.985 \\ 25 \end{gathered}$	$\begin{aligned} & 0.767 \\ & 19.48 \end{aligned}$	$\begin{gathered} 0.709 \\ 18 \end{gathered}$	$\begin{aligned} & \hline 2.33 \\ & 59.2 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.52 \\ 114.8 \\ \hline \end{array}$	$\begin{aligned} & 1.00 \\ & 25.4 \end{aligned}$	$\begin{array}{\|c\|} \hline 17.5 \\ 444.5 \end{array}$
112	33X-34010	$\begin{gathered} 1.575 \\ 40 \end{gathered}$	$\begin{gathered} 2.205 \\ 56 \end{gathered}$	$\begin{gathered} 0.261 \\ 6.6 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.261 \\ 6.6 \end{array}$	$\begin{gathered} 4.921 \\ 125 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.338 \\ 34 \end{array}$	$\begin{aligned} & 1.042 \\ & 26.47 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.984 \\ 25 \end{array}$	$\begin{aligned} & 2.96 \\ & 75.2 \end{aligned}$	$\begin{array}{\|c\|} \hline 5.08 \\ 129.0 \end{array}$	$\begin{array}{\|c\|} \hline .950 \\ 24.13 \end{array}$	$\begin{array}{\|c\|} \hline 17.5 \\ 444.5 \end{array}$
132	33X-44010	$\begin{gathered} 1.772 \\ 45 \end{gathered}$	$\begin{gathered} 2.441 \\ 62 \end{gathered}$	$\begin{gathered} 0.261 \\ 6.6 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.261 \\ 6.6 \end{array}$	$\begin{gathered} 5.709 \\ 145 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.200 \\ 31 \end{array}$	$\begin{aligned} & 0.924 \\ & 23.47 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.866 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 3.35 \\ & 85.1 \end{aligned}$	$\begin{array}{\|c\|} \hline 5.47 \\ 138.9 \end{array}$	$\begin{array}{\|c\|} \hline .950 \\ 24.13 \end{array}$	$\begin{array}{\|c\|} \hline 17.5 \\ 444.5 \end{array}$
145	33X-54010	$\begin{gathered} 2.165 \\ 55 \end{gathered}$	$\begin{gathered} 2.913 \\ 74 \end{gathered}$	$\begin{gathered} 0.354 \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.354 \\ 9 \end{array}$	$\begin{gathered} 6.299 \\ 160 \end{gathered}$	$\begin{gathered} 1.575 \\ 40 \end{gathered}$	$\begin{aligned} & 1.200 \\ & 30.48 \end{aligned}$	$\begin{gathered} 1.142 \\ 29 \end{gathered}$	$\begin{gathered} \hline 3.95 \\ 100.3 \end{gathered}$	$\begin{array}{\|c\|} \hline 6.90 \\ 175.3 \end{array}$	$\begin{aligned} & 1.25 \\ & 31.9 \end{aligned}$	$\begin{array}{\|c\|} \hline 17.5 \\ 444.5 \end{array}$
170	33X-64010	$\begin{gathered} 2.559 \\ 65 \end{gathered}$	$\begin{gathered} 3.307 \\ 84 \end{gathered}$	$\begin{array}{\|c} 0.354 \\ 9 \end{array}$	$\begin{array}{\|c} \hline 0.354 \\ 9 \end{array}$	$\begin{gathered} 7.283 \\ 185 \end{gathered}$	$\begin{array}{\|c\|} \hline 1.338 \\ 34 \end{array}$	$\begin{aligned} & 1.042 \\ & 26.47 \end{aligned}$	$\begin{array}{\|c\|} \hline 0.984 \\ 25 \end{array}$	$\begin{aligned} & 4.69 \\ & 119.1 \end{aligned}$	$\begin{array}{\|c\|} \hline 7.73 \\ 196.3 \end{array}$	$\begin{aligned} & 1.25 \\ & 31.9 \end{aligned}$	$\begin{gathered} 23.6 \\ 600 \end{gathered}$

*Without keyway pilot bore. ** Keyway to DIN 6885/3 p9 - standard metric keyway DIN 6885/1 p9.(1) Size 132: "h2" and "h3" dimensions, contact factory. May vary . 09 inch. For verification of manual release dimensions, contact factory.

Specifications - Sizes 72 thru 170/Unit Pricing (Discount Symbol R3)

Size Bolt Circle (mm)	Part Number	Nominal Static Torque	Inertia ($\mathbf{W k}^{\mathbf{2}}$)		Approx Weight	Max RPM	Power (Watts)	Thermal Capacity Hp-Sec/Min	List Price 333 Torque adjust brake	List Price 331 Without Torque adjust	Adder for thick pressure plate	Subtract for brake without Pressure Plate	Options List Adders			
		$\begin{aligned} & \mathrm{lb-ft} \\ & (N m) \end{aligned}$	$\mathrm{lb}-\mathrm{ft}^{2}$	$\begin{gathered} \mathrm{Kgm}^{2} \\ \times 10^{-4} \end{gathered}$	Ibs (Kg)								$\begin{array}{\|c\|} \hline \text { Seal } \\ \text { (boot) } \\ \text { kit } \end{array}$	Manual Release	End Cap Plug	ThruShaft Seal
72	33X-14010-XX-XX	3 (4)	. 002	. 84	2.28 (1.03)	3600	24	2	\$474.00	\$436.00	\$104.00	(\$36.00)	\$22.00	\$86.00	\$20.00	\$344.00
90	33X-24010-XX-XX	6 (8)	. 003	1.26	4 (1.81)	3600	29	3	524.00	486.00	122.00	(38.00)	24.00	100.00	30.00	344.00
112	33X-34010-XX-XX	12 (16)	. 005	2.10	6.78 (3.07)	3600	32	4	726.00	650.00	140.00	(50.00)	28.00	110.00	40.00	344.00
132	33X-44010-XX-XX	25 (32)	. 011	4.62	11.42 (5.18)	3600	49	6	864.00	786.00	170.00	(70.00)	40.00	126.00	50.00	344.00
145	33X-54010-XX-XX	45 (60)	. 019	7.98	14.45 (6.55)	3600	62	12	1,286.00	1,174.00	238.00	(80.00)	68.00	140.00	90.00	344.00
170	33X-64010-XX-XX	60 (80)	. 041	17.22	22.6 (10.25)	3600	76	13	1,660.00	1,534.00	258.00	(92.00)	100.00	160.00	90.00	344.00

Series 333 (torque adjustable) Armature Actuated Brakes

Dimensions

Sizes 196 thru 278

Dimensions

Size	Basic Model Number	Torque lb-ft (Nm)	$\begin{gathered} \text { D1 } \\ \text { Max } \end{gathered}$	B	X		C Hub length	E	F Recommended Hub Location	AG Set screw location English bores only	A		H		D	K	N 333 Series only	
					Min. Bore	Max. Bore					PressurePlate	No Plate	PressurePlate	No Plate				
																	Min.	Max.
196	33X-74020	$\begin{gathered} \hline 110 \\ (149) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 8.94 \\ 227 \\ \hline \end{array}$	$6 \times \mathrm{M} 8$	$\begin{gathered} \hline 1-3 / 8 \\ 20^{*} \end{gathered}$	$\begin{gathered} 1-5 / 8 \\ 45,48^{\star \star} \end{gathered}$	$\begin{array}{c\|} \hline 1.378 \\ 35 \end{array}$	$\begin{gathered} 2.836 \\ 72 \end{gathered}$	$\begin{gathered} 0.174 \\ 4.42 \end{gathered}$	$\begin{gathered} .689 \\ 17.50 \end{gathered}$	$\begin{aligned} & 3.902 \\ & 99.11 \end{aligned}$	$\begin{aligned} & \hline 3.469 \\ & 88.11 \end{aligned}$	$\begin{aligned} & 0.433 \\ & 11 \end{aligned}$	0	$\begin{array}{c\|} \hline 8.543 \\ 217 \end{array}$	$\begin{array}{\|c\|} \hline 7.717 \\ 196 \end{array}$	$\begin{gathered} 0.187 \\ 4.75 \end{gathered}$	$\begin{aligned} & \hline 0.479 \\ & 12.17 \\ & \hline \end{aligned}$
230	33X-84020	$\begin{gathered} \hline 180 \\ (240) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 10.38 \\ 263.6 \end{array}$	$6 \times \mathrm{M10}$	$\begin{gathered} \hline 1-5 / 8 \\ 25^{*} \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ 45,50^{* *} \end{gathered}$	$\begin{gathered} 1.575 \\ 40 \end{gathered}$	$\begin{gathered} 2.836 \\ 72 \end{gathered}$	$\begin{gathered} 0.216 \\ 5.49 \end{gathered}$	$\begin{gathered} .790 \\ 20.07 \end{gathered}$	$\begin{aligned} & \hline 4.352 \\ & 110.54 \end{aligned}$	$\begin{aligned} & 3.927 \\ & 99.75 \end{aligned}$	0.433	0	$\begin{array}{c\|} \hline 10.000 \\ 254 \end{array}$	$\begin{array}{c\|} \hline 9.055 \\ 230 \end{array}$	$\begin{gathered} \hline 0.340 \\ 8.64 \end{gathered}$	$\begin{aligned} & \hline 0.740 \\ & 18.80 \end{aligned}$
278	33X-94020	$\begin{gathered} \hline 300 \\ (400) \end{gathered}$	$\begin{aligned} & 12.43 \\ & 315.7 \\ & \hline \end{aligned}$	$6 \times \mathrm{M10}$	$\begin{gathered} \hline 1-7 / 8 \\ 25^{*} \end{gathered}$	$\begin{gathered} \hline 2-1 / 8 \\ 70 \end{gathered}$	$\begin{gathered} 1.969 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 2.836 \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.216 \\ 5.49 \end{gathered}$	$\begin{gathered} \hline .985 \\ 25.02 \end{gathered}$	$\begin{aligned} & 4.915 \\ & 124.84 \end{aligned}$	$\begin{gathered} 4.438 \\ 112.73 \end{gathered}$	$\begin{gathered} 0.492 \\ 12.5 \\ \hline \end{gathered}$	0	$\begin{array}{\|c\|} \hline 12.047 \\ 306 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 10.945 \\ 278 \\ \hline \end{array}$	$\begin{gathered} \hline 0.340 \\ 8.64 \end{gathered}$	$\begin{aligned} & \hline 0.730 \\ & 18.54 \end{aligned}$

Size	Basic Model Number	d1	d2	d3	d5	d6	h1		h2	h3	h4
							Pressure Plate	No Plate			
196	33X-74020	$\begin{array}{\|c\|} \hline 3.125 \\ 79.4 \end{array}$	$\begin{gathered} 3.937 \\ 100 \end{gathered}$	$\begin{gathered} 0.354 \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.354 \\ 9 \end{array}$	$\begin{gathered} 8.543 \\ 217 \end{gathered}$	$\begin{gathered} 1.575 \\ 40 \end{gathered}$	$\begin{gathered} 1.142 \\ 29 \end{gathered}$	$\begin{gathered} 5.51 \\ 140 \end{gathered}$	$\begin{gathered} 10.43 \\ 265 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$
230	33X-84020	$\begin{gathered} 3.86 \\ 98 \end{gathered}$	$\begin{gathered} 4.724 \\ 120 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.433 \\ 11 \end{array}$	$\begin{gathered} 0.433 \\ 11 \end{gathered}$	$\begin{gathered} 10.00 \\ 254 \end{gathered}$	$\begin{gathered} 1.850 \\ 47 \end{gathered}$	$\begin{gathered} 1.417 \\ 36 \end{gathered}$	$\begin{gathered} 5.34 \\ 161 \end{gathered}$	$\begin{gathered} 11.26 \\ 286 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$
278	33X-94020	$\begin{array}{\|c\|} \hline 4.724 \\ 120 \end{array}$	$\begin{array}{\|c\|} \hline 5.906 \\ 150 \end{array}$	$\begin{array}{\|c} 0.433 \\ 11 \end{array}$	$\begin{gathered} 0.433 \\ 11 \end{gathered}$	$\begin{array}{\|c\|} \hline 11.654 \\ 296 \end{array}$	$\begin{gathered} 2.205 \\ 56 \end{gathered}$	$\begin{gathered} 1.772 \\ 45 \end{gathered}$	$\begin{gathered} 7.36 \\ 187 \end{gathered}$	$\begin{gathered} 13.34 \\ 339 \end{gathered}$	$\begin{aligned} & 1.71 \\ & 43.4 \end{aligned}$

* Without keyway pilot bore. ** Keyway to DIN 6885/3 p9 - standard metric keyway DIN 6885/1 p9

Specifications - Sizes 196 thru 278/Unit Pricing (Discount Symbol R3)

Size Bolt Circle (mm)	Part Number	Nominal Static Torque	Inertia ($\mathbf{W k}^{\mathbf{2}}$)		Approx Weight	Max RPM	Power (Watts)	Thermal Capacity Hp-Sec/Min	List Price 333 and 331 Series brakes	List Price without Pressure Plate	Options List Adders			
		lb-ft (Nm)	$\mathrm{lb}-\mathrm{ft}^{2}$	$\begin{aligned} & K_{g m}{ }^{2} \\ & \times 10^{-4} \end{aligned}$	Ibs (Kg)						Seal (boot) kit	Manual Release	End Cap Plug	ThruShaft Seal
196	33X-74020-XX-XX	110 (150)	. 066	27.72	50.00 (22.7)	1800	84	22	\$3,074.00	\$2,674.00	126.00	300.00	100.00	752.00
230	33X-84020-XX-XX	180 (240)	. 163	68.46	47.00 (21.3)	1800	102	28	4,072.00	3,514.00	150.00	368.00	120.00	752.00
278	33X-94020-XX-XX	300 (400)	. 401	168.42	75.00 (34.0)	1800	112	30	8,786.00	7,986.00	180.00	550.00	150.00	752.00

Model Number	Size	NEMA Frame	A	AJ	AK	B	D	E	G	H	HL	Hub Length	H1	H3	J	L	Internal Lead Hole Location
3-3X-140F0	72	48C	. 28	3.75	3.0	1/4	5.50	. 19	2.07	. 50	. 54	. 709	1.22	3.85	3.35	. 257	(2) @ 60\%/180 ${ }^{\circ}$ apart
3-3X-240F0	90*	48C	. 28	3.75	3.0	1/4	5.50	. 19	2.30	. 50	. 55	. 787	1.25	4.52	3.96	. 257	(2) @ 60\%/180 ${ }^{\circ}$ apart
3-3X-240G0	90	56C	. 41	5.875	4.50	3/8	6.83	. 19	2.48	. 68	. 73	. 787	1.43	4.52	3.96	. 257	(2) @ $25^{\circ} / 180^{\circ}$ apart
3-3X-340G0	112	56C, 145TC	. 41	5.875	4.50	3/8	6.83	. 19	2.86	. 68	. 74	. 787	1.72	5.08	4.97	. 287	(2) @ $25^{\circ} / 180^{\circ}$ apart
3-3X-440G0	132	56C, 145TC	. 41	5.875	4.50	3/8	6.83	. 19	3.05	. 68	. 74	. 984	1.59	5.47	5.79	. 327	(2) @ $25^{\circ} / 180^{\circ}$ apart
3-3X-440H0	132	182-256TC \triangle	. 56	7.25	8.50	1/2	9.25	. 19	3.37	1.00	. 81	. 984	1.91	5.47	5.79	. 327	(1) @ 25°
3-3X-540G0	145*	145TC	. 41	5.875	4.50	3/8	6.83	. 19	3.63	. 68	. 92	1.181	1.87	6.90	6.45	. 366	(2) @ $25^{\circ} / 180^{\circ}$ apart
3-3X-540H0	145	182-256TC \triangle	. 56	7.25	8.50	1/2	9.25	. 19	3.95	1.00	. 94	1.181	2.19	6.90	6.45	. 366	(1) @ 25°
3-3X-640H0	170*	182-256TC \triangle	. 56	7.25	8.50	1/2	9.25	. 19	4.03	1.00	. 94	1.181	2.04	7.73	7.47	. 380	(1) @ 15 ${ }^{\circ}$
3-3X-740H0	196	182-256TC	. 53	7.25	8.50	1/2	8.90	. 19	5.0	1.30	1.50	1.378	2.14	10.43	8.54	**	None
3-3X-740K0	196	$\begin{aligned} & \hline 324 / 326 T C-\triangle \\ & 404 / 405 T C \end{aligned}$. 66	11.0	12.50	5/8	13.25	. 19	5.38	1.50	1.67	1.378	2.69	10.43	8.54	**	(2) @ $25^{\circ * * *}$
3-3X-840H0	230*	182-256TC \triangle	. 53	7.25	8.50	1/2	10.00	. 19	5.62	1.00	1.22	1.58	2.42	11.26	10.00	**	None
3-3X-840K0	230	$\begin{aligned} & \hline 324 / 326 T C-\triangle \\ & 404 / 405 T C \end{aligned}$. 66	11.0	12.50	5/8	13.25	. 19	6.10	1.50	1.72	1.58	2.94	11.26	10.00	**	(2) @ $25^{\circ * * *}$
3-3X-940K0	278*	$\begin{aligned} & \hline 324 / 326 \mathrm{TC}- \\ & 404 / 405 \mathrm{TC} \end{aligned}$. 66	11.0	12.50	5/8	13.25	. 19	6.75	1.60	1.82	1.97	3.38	13.34	12.05	**	(2) @ $25^{\circ * * *}$

On these sizes, the brake diameter is larger than the adaptor mounting/bolt circle. ${ }^{ *} \mathrm{~L}$ min. \& max: size $196=.187 \mathrm{~min} . \& .479$ max.
${ }^{* * *}$ On each side of the 12:00 position (the location of second hole is not shown on above drawing)
Δ Frame shaft size may require derate of a larger brake. Confirm hub bore.
Available Frames/Sizes and Unit Pricing Discount Symbol R3

Model Number	Size	Nominal Static Torque		NEMA Frame Size ${ }^{\triangle}$	Approximate Weight		List Price 333 torque adjust brake	List Price 331 without torque adjust
		Lb-Ft	Nm		Lbs	Kg		
3-3X-140F0-XX-XX	72	3	4	48C	2.76	1.25	\$554.00	\$516.00
3-3X-240F0-XX-XX	90	6	8	48C	4.48	2.03	604.00	566.00
3-3X-240G0-XX-XX	90	6	8	56C	5.24	2.38	604.00	566.00
3-3X-340G0-XX-XX	112	12	16	56C	8.02	3.64	826.00	750.00
3-3X-440G0-XX-XX	132	25	32	56C	14.00	6.36	1,112.00	1,034.00
3-3X-440Н0-XX-XX	132	25	32	182TC-256TC	17.52	7.95	1,460.00	1,382.00
3-3X-540G0-XX-XX	145	45	60	56C	16.14	7.32	2,270.00	2,158.00
3-3X-540Н0-XX-XX	145	45	60	182TC-256TC	20.55	9.32	2,382.00	2,270.00
3-3X-640Н0-XX-XX	170	60	80	182TC-256TC	35.00	15.89	3,710.00	3,584.00
3-3X-740H0-XX-XX	196	110	150	182TC-256TC	55.00	25.00	4,140.00	4,140.00
3-3X-740K0-XX-XX	196	110	150	324-365/404-405TC/TSC/UC/USC	72.30	32.79	4,858.00	4,858.00
3-3X-840Н0-XX-XX	230	180	240	182TC-256TC	65.55	29.76	6,950.00	6,950.00
3-3X-840K0-XX-XX	230	180	240	324-365/404-405TC/TSC/UC/USC	88.30	40.05	7,718.00	7,718.00
3-3X-940K0-XX-XX	278	300	400	324-365/404-405TC/TSC/UC/USC	140.00	63.50	9,130.00	9,130.00

Qty $4 \varnothing .56$ thru

IP43 Enclosure
1P43 Enclosure

Dimensions/ Unit Pricing IP43
Discount Symbol R3

Model Number	Size	Nominal Static Torque Lb-Ft (Nm)	NEMA Frame*	HL	G	H1	H3	L	Internal lead location X, \varnothing and O on " N " Bolt circle	Approximate Weight Lbs (Kg)	List Price 33C torque adjust	List Price 33B without torque adjust	Manual Release Adder
33X-441H0	132	25 (32)	182TC-256TC	1.16	. 984	1.94	6.35	2.88	(1) @ 65° on R3.81	20.14 (9.1)	\$1,610.00	\$1,532.00	\$126.00
33X-541H0	145	45 (60)	182TC-256TC	1.19	1.181	2.22	6.90	3.50	(1) @ 65° on R3.81	23.17 (10.5)	2,620.00	2,508.00	140.00

For sizes 196 through 278 with C-Face and housing, see Series 350 or Series 360 .
IP54 Enclosure (No manual release/Optional Internal manual release)

Dimensions/ Unit Pricing IP54

Discount Symbol R3

Model Number	Size	Nominal Static Torque Lb-Ft (Nm)	NEMA Frame*	HL	G	L	Internal lead location X, \varnothing and O on N B.C.	Approximate Weight Lbs (Kg)	List Price 33J torque adjust	List Price 33H without torque adjust	Internal Manual Release Adder
33X-444H0	132	25 (32)	182TC-256TC	1.16	. 984	2.88	(1) @ 65° on R3.81	25 (11.35)	\$2,358.00	\$2,280.00	\$126.00
33X-544H0	145	45 (60)	182TC-256TC	1.19	1.181	3.50	(1) @ 65° on R3.81	29 (13.16)	3,676.00	3,564.00	140.00
33X-644H0	170	60 (80)	182TC-256TC	1.19	1.181	3.50	(1) @ 65° on R3.81	36 (16.34)	5,572.00	5,446.00	160.00

[^15]
Ordering Information

Metric Mount

Options Table 3
Voltages - Table 2

Numeral	Description
0	No torque adjust, mag body not machined for manual release
1	No torque adjust
2	With torque adjust, mag body not machined for manual release
3	With torque adjust
B	Housing with conduit hole, no torque adjust (Size $72-145$)
C	Housing with conduit hole, with torque adjust
H	IP54 housing, no torque adjust (Size 72 -170)
J	IP54 housing, with torque adjust (Size $72-170$)

- Hub bore and keyseat - Table 1

Numeral	AAB-E Unit Sizes
1	72
2	90
3	112
4	132
5	145
6	170
7	196
8	230
9	278

Numeral	Description
2	Reduced torque with air gap shim
3	Reduced torque (severe duty- long life)
4	Standard
5	Size 90 Only; 8.34 lb-ft holding applications only
6	Std torque with air gap shim

Table 1 - Hub Bores 333-14010-***EA
NOTE: See page 100 for recommended minimum bore size by torque

$\begin{gathered} \text { Bore } \\ \text { (in) } \end{gathered}$		Keyway Size*		Available Bores								
				Brake Size								
				1	2	3	4	5	6	7	8	9
		Width (in)	Depth (in)	72	90	112	132	145	170	196	230	278
3/8	OV	3/32	3/64	std								
1/2	OK	1/8	1/16	std	std							
9/16	ON	1/8	1/16	non std	non std							
5/8	OB	3/16	3/32		std	std	non std					
3/4	OC	3/16	3/32		non std	non std	non std					
7/8	OD	3/16	3/32			std	std	std	non std			
1	OL	1/4	1/8				non std	std	non std			
1-1/8	OE	1/4	1/8				std	std	std	non std		
1-1/4	OF	1/4	1/8						non std	non std		
1-3/8	OG	5/16	5/32						std	std	non std	non std
1-1/2	OM	3/8	3/16							std	non std	non std
1-5/8	OH	3/8	3/16							std	std	non std
1-3/4	01	3/8	3/16								std	non std
1-7/8	0 J	1/2	1/4								std	std
2	OL	1/2	1/4									non std
2-1/8	ON	1/2	1/4									std
Metric		Width (mm)	Depth (mm)	Metric Bores Supplied Without Set Screws, circlip recommended								
11	11	4	1.8	std		non std						
14	14	5	2.3	std	std	std	non std	non std				
15	15	5	2.3	non std	std	std	non std	non std	non std			
16	16	5	2.3		non std							
20	20	6	2.8		std**	std	non std	non std	non std	non std**		
22	22	6	2.8			std**	non std	non std	non std	non std		
24	24	8	3.3				std	non std	non std	non std		
25	25	8	3.3				std	non std	std	non std	non std**	non std ${ }^{* *}$
28	28	8	3.3				non std**	non std	std	non std	non std	non std
30	30	8	3.3					std	std	std	std	std
34	34	10	3.3					std**	non std	non std	non std	non std
35	35	10	3.3						non std	std	std	std
38	38	10	3.3						std**	std	std	non std
40	40	12	3.3							std	std	std
42	42	12	3.3							non std	std	non std
45	45	14	3.8							non std	std	std
48	48	14	3.8							std**	non std	non std
49	49	14	3.8								non std	non std
50	50	14	3.8								std**	std
55	55	16	4.3									std
60	60	18	4.4									std
70	70	20	4.9									std

NOTE: Add the following for non-standard bores: • Sizes 72 through $132=\$ 252.00 \cdot$ Sizes 145 through $196=\$ 296.00 \cdot$ Sizes $230 \& 278=\$ 592.00$.
*Standard U.S. Keyseats made to ANSI B17.1 standard. Standard metric Keyseat DIN 6885/1 p9. ** Keyseat to DIN 6885/3 p9.

Table 2 - STD Coil Voltage
333-14010-14-* A

Characterto insert	Coil Voltage	Current Rating in Amps								
		1	2	3	4	5	6	7	8	9
		72	90	112	132	145	170	196	230	278
B	414/432 Vdc	0.06	0.07	0.09	0.12	0.16	0.22	0.25	0.26	0.29
C	12 Vdc	2.13	2.66	2.27	3.50	3.90	5.60	6.40	8.30	N/A
E	24 Vdc	1.10	1.28	1.16	1.80	1.84	2.80	3.30	4.27	3.85
J	90 Vdc	0.28	0.32	0.29	0.45	0.72	0.70	0.82	1.05	1.19
K	103 Vdc	0.21	0.24	0.33	0.51	0.53	0.80	0.75	0.96	1.08
L	180 Vdc	0.15	0.17	0.15	0.23	0.38	0.36	0.42	0.54	0.61
M	205 Vdc	0.11	0.12	0.17	0.27	0.27	0.41	0.38	0.49	0.56
S	258 Vdc	0.09	0.10	0.14	0.21	0.23	0.33	0.34	0.40	0.44
N*	115 Vac	0.21	0.24	N/A						
P*	230 Vac	0.11	0.12	0.17	. 27	N/A	N/A	N/A	N/A	N/A
V**	115 Vac quickset	0.21	0.24	N/A						
W**	230 Vac quickset	0.11	0.12	0.17	N/A	N/A	N/A	N/A	N/A	N/A

*In-line rectifier. Add $\$ 92.00$ to brake list price
**In-line quickset rectifier. Add $\$ 140.00$ to brake list price.
Contact factory for non-standard coils.
Add the following for non-std. coil voltage

- Sizes 72 through $112=\$ 188.00$
- Sizes 132 through $170=\$ 216.00$
- Sizes 196 through $278=\$ 308.00$

For separate AC rectifiers see pages 89-92

Table 3-Options 333-14010-14-E *

Character to insert	Description/Options
A	Basic brake
C	Option A with non-maintained release
G	Short hub with non-maintained release
J	Steel hub for press-fit applications
K	Steel hub, non-maintained release
L	Internal manual release, non-maintained
R	Maintained manual release (bolts)

Modifications are availablesee AAB Modification Section

Features

- Torque rating 102-400 Nm, 75-300 lb-ft
- Universal mounting
- Class H insulation
- Maintained manual release
- Corrosion resistance (stainless steel external hardware)
- IP56 enclosure protection (available in ductile cast iron or aluminum cover)
- ABS, CSA and CE certification
- Simple wear adjustment with access hole for air gap inspection
- Metric and US Customary bore sizes
- C-Face mounting - various adapter plates available for 182TC through 405TSC frame mounting
- Splined hub for quiet dependable operation
- Installation Instructions/Parts List: P/N 8-078-895-00

Standard Options

- AC rectifier (see pages 86-89)
- Tach/encoder mounting
- Space Heater 115, 230 or 460 Vac
- Thru-shaft
- IEC D and C Flange
- Conduit Box- specify F1 or F2 location (F1 location shown)

F1 Conduit Box location shown.
F2 location on left side facing brake housing.

Size		NEMA frame	\varnothing B	Torque		AJ	AK	Mount Bolt	X				D1**	D1***	B1	Z	L	M	S	P	J1	A**	$A^{* * *}$	J	C Hub length	HL Hub Location	AG set screw location		
		$\mathrm{lb}-\mathrm{ft}$		Nm	Min. Bore				Max. Bore																				
		in			mm				in	mm																			
7	196		$\begin{aligned} & \text { 182TC- } \\ & \text { 256TSC } \end{aligned}$. 53	75		102	7.250	8.500	1/2"-13	1.375	20	1.625	48*	12.38	15.75	3.57	3.97	4.6	8.00	9.68	8.25	. 93	6.47	6.73	. 50	1.378	1.63	$\begin{gathered} .689 \\ 17.50 \end{gathered}$
7	196	$\begin{array}{\|l\|} \hline \text { 182TC- } \\ \text { 256TSC } \\ \hline \end{array}$. 53	110	150	7.250	8.500	1/2"-13	1.375	20	1.625	48*	12.38	15.75	3.57	3.97	4.6	8.00	9.68	8.25	. 93	6.47	6.73	. 50	1.378	1.63	$\begin{gathered} .689 \\ 17.50 \end{gathered}$		
7	196	$\begin{aligned} & \text { 284TC- } \\ & \text { 286TSC } \end{aligned}$. 53	110	150	9.000	10.500	1/2"-13	1.375	20	1.625	48*	12.38	15.75	3.57	3.97	4.6	8.00	9.68	8.25	. 93	6.47	6.73	. 50	1.378	1.63	$\begin{gathered} .689 \\ 17.50 \end{gathered}$		
7	196	$\begin{array}{\|l\|} \hline 324 \mathrm{TC}- \\ \text { 405TSC } \end{array}$. 66	110	150	11.000	12.500	5/8"-18	1.375	20	1.625	48*	15.75	15.75	3.57	3.97	4.6	9.63	11.38	9.94	. 93	6.73	6.73	. 50	1.378	1.63	$\begin{gathered} .689 \\ 17.50 \end{gathered}$		
8	230	$\begin{array}{\|l\|} \hline \text { 284TC- } \\ \text { 286TSC } \end{array}$. 53	180	240	9.000	10.500	1/2"-13	1.625	25	1.875	50*	15.75	15.75	4.00	4.46	5.0	9.63	11.38	9.94	. 93	6.73	6.73	. 25	1.575	1.63	$\begin{gathered} .790 \\ 20.07 \end{gathered}$		
8	230	$\begin{array}{\|l\|} \hline 324 \mathrm{TC}- \\ 405 \mathrm{TSC} \\ \hline \end{array}$. 66	180	240	11.000	12.500	5/8"-18	1.625	25	1.875	50*	15.75	15.75	4.00	4.46	5.0	9.63	11.38	9.94	. 93	6.73	6.73	. 25	1.575	1.63	$\begin{gathered} .790 \\ 20.07 \end{gathered}$		
9	278	$\begin{aligned} & \hline 324 \mathrm{TC}- \\ & \text { 405TSC } \end{aligned}$. 66	300	400	11.000	12.500	5/8"-18	1.875	25	2.125	70	15.75	15.75	4.00	5.08	5.0	9.63	11.38	9.94	. 97	6.73	6.73	. 25	1.969	1.63	$\begin{gathered} .985 \\ 25.02 \end{gathered}$		

[^16]
Component Materials:

- Adapter plate - steel (zinc plate)
- Splined hub - steel (zinc plate)
- Splined carrier - aluminum
- Magnet body - steel (zinc plate)

Hardware - steel (corrosion resistant plating or stainless)

UnitSpecifications/Pricing (Discount Symbol R5)

Size	NEMA Frame	Nominal Static Torque		Part Number		Weight/lbs		$\begin{aligned} & \text { Max } \\ & \text { RPM } \end{aligned}$	Thermal Capacity Hp -Sec/Min	List Price	Options				
		lb -ft	Nm	Ductile Cast Iron	Aluminum Cover	Ductile Iron	Aluminum				Electronic Brake Release Indicator*	Space Heater	$\begin{array}{\|c\|} \hline \text { Terminal } \\ \text { Strip } \end{array}$	$\begin{gathered} \text { IP56 Conduit } \\ \text { Box } \end{gathered}$	$\begin{gathered} \text { IP67 Conduit } \\ \text { Box } \end{gathered}$
196	$\begin{array}{\|l\|} \hline \text { 182TC- } \\ \text { 256TSC } \end{array}$	75	102	351-734HX-XX-XX	355-734HX-XX-XX	-	103	1800	22	\$8,532.00	\$660.00	\$416.00	\$240.00	\$410.00	\$720.00
196	$\begin{aligned} & \hline 182 \mathrm{TC}- \\ & \text { 256TSC } \end{aligned}$	110	150	351-744HX-XX-XX	355-744HX-XX-XX	-	103	1800	22	8,932.00	660.00	416.00	240.00	410.00	720.00
196	$\begin{aligned} & \text { 284TC- } \\ & \text { 286TSC } \end{aligned}$	110	150	351-744JX-XX-XX	355-744JX-XX-XX	-	103	1800	22	9,330.00	660.00	416.00	240.00	410.00	720.00
196	$\begin{aligned} & \hline \text { 324TC- } \\ & \text { 405TSC } \end{aligned}$	110	150	351-744KX-XX-XX	355-744KX-XX-XX	134	128	1800	22	9,732.00	660.00	416.00	240.00	410.00	720.00
230	$\begin{aligned} & \hline \text { 284TC- } \\ & \text { 286TSC } \end{aligned}$	180	240	351-844JX-XX-XX	355-844JX-XX-XX	208	178	1800	28	9,818.00	660.00	416.00	240.00	410.00	720.00
230	$\begin{aligned} & \text { 324TC- } \\ & \text { 405TSC } \end{aligned}$	180	240	351-844KX-XX-XX	355-844KX-XX-XX	208	178	1800	28	10,418.00	660.00	416.00	240.00	410.00	720.00
278	$\begin{aligned} & \hline \text { 324TC- } \\ & \text { 405TSC } \end{aligned}$	300	400	351-944KX-XX-XX	355-944KX-XX-XX	219	189	1800	30	13,210.00	660.00	416.00	240.00	410.00	720.00

Ordering Information Part number example: $355-74$ J C O M E A
Group "3" Armature Acting Brake (Direct acting with a DC Coil)
Mounting Design
Numeral Design
5 Pressure Plate Mount

Numeral	Brake Cover Type
1	Ductile Iron
5	Aluminum

Numeral/ Alpha	Magnet Body Size	Torque lb-ft
7	196	110
8	230	180
9	278	300

*Remote mount device

	Torque/Modification
3	Reduced Torque
4	Standard Torque

Numeral	Enclosure			
4	IP 56 (standard)			
E	IP 56 conduit box with terminal strip*			
G	IP56 conduit box*		H	IP67 conduit box* with terminal strip
:---:	:---			
M	IP67 conduit box*			

*Specify F1 or F2 location for conduit box modification

Table 2 - Coil Voltage

Character to Insert	Coil Voltage	Current Rating		
		$\mathbf{8}$	$\mathbf{9}$	
E	24 Vdc	3.30	4.27	3.85
J	90 Vdc	.82	1.05	1.19
K	103 Vdc	.75	.96	1.08
L	180 Vdc	.42	.54	.61
M	205 Vdc	.38	.49	.56
B	$414 / 432$ Vdc	.24	.26	.28

Additional Options	
Standard Brake	0
Space Heater 115	1
Space Heater 230	2
Space Heater 460	3
Brake release indicator NO/NC	4
Brake release indicator NO/NC Space Heater 115	5
Brake release indicator NO/NC Space Heater 230	6
Brake release indicator NO/NC Space Heater 460	7

Table 1 - Hub Bores
NOTE: See page 100 for recommended minimum bore sizes by torque

Character to insert	Bore	Keyway Size*		Bores Available Unit Size		
		Width (in.)	Depth (in.)			
				196	230	278
OG	1.375	5/16	5/32	X		
OM	1.500	3/8	3/16	X		
OH	1.625	3/8	3/16	X	X	
01	1.750	3/8	3/16		X	
0 J	1.875	1/2	1/4		X	X
OL	2.000	1/2	1/4			X
ON	2.125	1/2	1/4			X
Metric	Bore	Width	Depth	196	230	278
20	20	-	-	X		
30	30	8	3.3	X		X
35	35	10	3.3	X	X	
38	38	10	3.3	X	X	
40	40	12	3.3	X	X	X
42	42	12	3.3	X	X	
45	45	14	3.8	X	X	X
48	48	14	3.8	X		
50	$50^{* *}$	14	$3.8{ }^{* *}$		X	
50	50	14	3.8			X
55	55	16	4.3			X
60	60	18	4.4			X
70	70	20	4.9			X

*Standard U.S. keyseats made to ANSI B17.1 standard. Standard metric keyseat DIN 6885/1 p9.
**Keyseat to DIN 6885/3 p9.

Shown with optional conduit box

Reverse view showing adapter mounting plate orientation

Brake showing space heater and release indicator location

Features

- Universal mounting
- Internal maintained manual release
- IP56 enclosure
- ABS, CE, and CSA Certification
- Brake gaskets are captive (O-Ring), so parts are not lost during maintenance
- Stainless Steel nameplate (exterior)
- Modular brake assembly Install and remove brake without having to readjust air gaps
- Class H insulation
- Installation Instructions and Parts List:
P/N 8-078-898-00

Standard Brake Options

- AC Rectifier
(see pages 86-89)
- Tach/encoder mounting
- Space Heater
- Electronic brake release indicator
- Contact Factory for Electronic Wear Indicator
- Thru-Shaft
- Optional external non-maintained/maintained manual release
- Optional IP56 or IP67 conduit box mounted on adapter plate. Wiring is not disturbed when brake housing is removed

F1 Conduit Box location shown. F2 location on left side facing brake housing.

Dimensional Data Sizes 170 through 278

Size		Model	NEMA Frame	Torque		ØB	AJ	AK	Mount Bolt	D1	E	B1	Z	L	h2	h3	S	P	A	HL Hub Location		S.S. Location	
		lb-ft		Nm																			
6	170		36X-6	182-256TC	35	47	. 53	7.25	8.50	1/2"-13	10.38	. 185	3.57	3.94	3.8	6.00	16.1	9.54	7.09	6.70	. 19	4.64	1.63
6	170	36X-6	182-256TC	60	80	7.25		8.50	10.38		. 185	9.54						7.09	6.70				
6	170	36X-6	284-286TC	60	80	9.00		10.50	10.76		. 190	10.25						7.81	6.90				
7	196	36X-7	182-256TC	110	149	. 53	7.25	8.50	1/2"-13	11.81	. 185	3.72	4.12	4.3	6.70	16.6	10.25	7.81	6.90	. 19	4.70	1.75	
7	196	36X-7	284-286TC	110	149	. 53	9.00	10.50															
8	230	36X-8	284-286TC	180	240	. 53	9.00	10.50	1/2"-13	13.63	. 190	4.45	4.94	5.2	8.25	17.9	11.19	10.94	8.27	. 19	5.20	2.12	
8	230	36X-8	324TC-405TSC	180	240	. 69	11.00	12.50	5/8"-18														
9	278	36X-9	324TC-405TSC	300	400	. 69	11.00	12.50	5/8"-18	15.68	190	5.12	5.60	5.8	9.20	18.8	12.19	11.94	9.69	. 19	5.82	2.12	
9	278	36X-9	444-445TC	300	400	. 69	14.00	16.00		16.56							12.63	12.38					

Note: Dimensions for estimating purposes only.

Specifications/Unit Pricing (Discount Symbol R5)

Size	NEMA Frame	Nominal Static Torque		Model Number	Thermal Capacity Hp-Sec/Min	Approx weight lbs.	List Price	External Maintained/Deadman Manual Release	Electronic Brake Release Indicator	Space Heater	Terminal Strip	IP-56 Conduit Box	IP-67 Conduit Box
		lb -ft	Nm										
170	182-256TC	35	47	3-61-634H0	14	101	\$6,390.00	\$500.00	\$660.00	\$416.00	\$240.00	\$410.00	\$720.00
170	182-256TC	60	80	3-61-644H0			6,790.00	500.00	660.00	416.00	240.00	410.00	720.00
170	284-286TC	60	80	3-61-644J0			7,190.00	500.00	660.00	416.00	240.00	410.00	720.00
196	182-256TC	75	102	3-61-734H0	20	120	8,532.00	600.00	660.00	416.00	240.00	410.00	720.00
196	182-256TC	110	150	3-61-744H0			8,932.00	600.00	660.00	416.00	240.00	410.00	720.00
196	284-286TC	110	150	3-61-744J0			9,330.00	600.00	660.00	416.00	240.00	410.00	720.00
230	284-286TC	180	240	3-61-844J0	26	176	9,818.00	600.00	660.00	416.00	240.00	410.00	720.00
230	324TC/364-365TC	180	240	3-61-844K0			10,418.00	600.00	660.00	416.00	240.00	410.00	720.00
278	324TC/364-365TC	300	400	3-61-944K0	28	280	13,210.00	600.00	660.00	416.00	240.00	410.00	720.00
278	444TC	300	400	3-61-944L0			13,830.00	600.00	660.00	416.00	240.00	410.00	720.00

Ordering Information

Part number example: 3 361- 744 J C OM E S

Additional Options	
Standard Brake	0
Space Heater 115	1
Space Heater 230	2
Space Heater 460	3
Brake release indicator Switch NO/NC	4
Brake release indicator NO/NC Space Heater 115	5
Brake release indicator NO/NC Space Heater 230	6
Brake release indicator NO/NC Space Heater 460	7
Wear indicator NO NO	A
Wear indicator NO/NC Space Heater 115	B
Wear indicator NO/NC Space Heater 230	C
Wear indicator NO/NC Space Heater 460	D

Table 1 - Hub Bores
NOTE: See page 100 for recommended minimum bore sizes by torque

$\begin{array}{c}\text { Character } \\ \text { to insert }\end{array}$		Bore	$\begin{array}{c}\text { Keyway Size* }\end{array}$	Bores Available			
		(in.)	Depth				
(in.)							

[^17]Metric keyseats to DIN 6885/1 p9.

Mounting/Size	
NEMA 180/210/250 C-face	H
NEMA 280 C-face	J
NEMA 320/400 C-face	K
NEMA 440 C-face Mt^{*}	L
NEMA 500 C-face Mt^{*}	M
IEC 132 C -face Mt^{*}	S
IEC 160 C -face Mt^{*}	T
IEC 132 D -face Mt^{*}	U
IEC 160 D -face Mt^{*}	V
IEC 180 D -face Mt^{*}	W
IEC 200 D -face Mt^{*}	X
IEC 225 D -face Mt^{*}	Y

*Contact factory for pricing on these mounting options

Table 2 - Coil Voltage

Character to Insert	Coil Voltage	Current Rating			
		$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
E	24 Vdc	2.80	4.27	3.85	3.85
J	90 Vdc	.70	1.05	1.19	1.19
K	103 Vdc	.80	.96	1.08	1.08
L	180 Vdc	.36	.54	.61	.61
M	205 Vdc	.41	.49	.56	.56
S	258 Vdc	.33	.34	.40	.44
B	$414 / 432$ Vdc	.22	.26	.28	.28

Other voltages available - consult factory
For AC rectifiers see pages 89-92
Table 3 - Additional Options

Standard - Internal Maintained Manual Release	R
External Non-Maintained (deadman) and Maintained Manual Release	S

NOTE: Final part number may change due to specifications or options selected or other product design considerations. A number such as a 2, 3, 4 etc., in the $12^{\text {th }}$ position is used to designate a unique brake (custom) and can only be assigned by Stearns Design Engineering Department.
Modifications are available - see AAB Modification Section.

Product Overview

NOTE: For brake response times with and without AC rectifiers see page 97.
 Maximum operating voltage is $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$, maximum ambient temperature range of $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

Combination Full and Half Wave

Provides option of utilizing either full or half wave rectification Maximum operating voltage is $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$. Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

TOR-AC Full and Half Wave

Provides coil turn off nearly as fast as DC side switching. Includes line filter for AC drive applications or whenever electrical filtering is required to protect the rectifier from high-frequency electrical line pulses. Must be switched on/off by a switch in an AC lead of the TOR-AC. Maximum operating voltage $+10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$.
Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

QuickSet

> A rectifier that provides a quick brake response time even when the rectifier is permanently wired across the windings of an AC motor. The QuickSet Rectifier detects the decaying, motor generated voltage that occurs when power is removed from the motor circuit, and interrupts brake coil current in response. QuickSet Rectifiers can be specified full wave or half wave.
> Operating voltage is $\pm 10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$.
> Maximum ambient temperature range is $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$

QuickSet/QuickRelease A rectifier that provides a timed, full wave rectified "over-excitation" brake release function, followed by continuous, half wave rectified brake released "holding" function, when used in conjunction with an appropriate brake coil voltage rating.
USED AS WATTSAVER: Provides a timed, full wave rectified brake release function, followed by continuous, half wave rectified brake released "wattsaver" function, when used in conjunction with an appropriate brake coil voltage rating. The Wattsaver serves to reduce the electrical power consumption and dissipation of the brake in the released state.
Operating voltage is $\pm 10 \%$ of nominal, frequency $50 / 60 \mathrm{~Hz}$. Maximum ambient temperature varies by part number - see information by part number on following pages.

Bi-Phase Rectifiers

A rectifier that is typically used in single phase, reversing, permanent split capacitor (PSC) motor applications. A single phase, reversing, PSC motor typically has two windings of equivalent resistance. The winding which serves as the main winding is connected directly across the power line, the winding which serves as the auxiliary winding is connected in series with a run capacitor across the power line. The direction of rotation is reversed by interchanging the function of the two windings. The Bi-Phase Rectifier provides the same voltage to the brake coil regardless of the direction of rotation of the motor. The Bi-Phase Rectifier has five leads and comes in standard response and QuickSet versions. Bi-Phase Rectifiers are application specific. Please contact factory for more information.

AC Rectifiers Continued
 Selection \& Pricing

Discount Symbol R3

115 Vac Input Voltage	Full Wave									
	Brake Sizes	Part Number	$\begin{gathered} \mathrm{AC} \\ \text { Input } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	DC Output	Brake Coil Voltage/Letter Designation	Switching		Connection	Max Current (amps)	List Price
**At 50 Vdc coil voltage,	72-196	412029101K	115	103	K or J	ac or dc side or connect across motor terminals		ac leads dc terminal block	. 8	\$92.00
this rectifier can be used on brake	ALL	412029201K	115	103	K or J	ac or dc side or connect across motor terminals		ac terminal block dc terminal block	1.6	\$140.00
$\begin{aligned} & \text { sizes } \\ & 72-112 . \end{aligned}$	ALL	412029203K	115	103	K or J	ac or dc side or connect across motor terminals		ac leads dc leads	1.6	\$140.00
At 103 Vdc coil voltage,	Combination Full and Half Wave									
this rectifier can be used on brake sizes 72-	Brake Sizes	Part Number	AC Input	DC Output	Brake Coil Voltage/ Letter Designation		Switching	Connection	Max Current (amps)	List Price
196. At all other listed coil	**	412049101K	$\begin{aligned} & 115 / 230 \\ & 460 / 575 \end{aligned}$	$50 / 103$ 50 $207 / 259$ 207 $414 / 517$ 414	$50 \mathrm{Vdc}=\mathrm{G}$ $103 \mathrm{Vdc}=\mathrm{K}$ $207 \mathrm{Vdc}=\mathrm{M}$ $259 \mathrm{Vdc}=\mathrm{S}$ $414 \mathrm{Vdc}=\mathrm{B}$ $517 \mathrm{Vdc}=\mathrm{A}$		ac or dc side or connect across motor terminals	ac terminal block dc terminal block	. 8	\$180.00
this rectifier can be used on any brakes size.	Quick Set/Quick Release or 103 Vdc Wattsaver									
	Brake Sizes	Part Number	AC Input	DC Output	Brake Coil Vo Letter Design	tage/ ation	Switching	Connection	Max Current (amps)	List Price
	72-112	412019611K	115	50 Vdc Sustaining	G		ac side only or connect across motor terminals	ac terminal block dc terminal block	2.0 1.0	\$960.00

Rectifier Dimensions

Tape Mount

Part Number	Length	Width	Ht	Connection	
				AC	DC
4-1-20291-01K	1.4	0.6	1.0	Leadwire, 7" long	Terminal
4-1-20292-01K	1.38	1.06	0.94	Terminal	Terminal
4-1-20292-03K	1.38	1.06	0.9	Leadwire, 2.5" long	Leadwire, 2.5" long
4-1-20491-01K	2.25	1.25	1.0	Terminal	Terminal
4-1-20591-03K	1.4	0.75	0.9	Leadwire, 7" long	Leadwire, 7" long
4-1-20591-01K	1.4	0.75	1.0	Leadwire, 7" long	Terminal

Terminal location or connection may differ from sketch Flange or Tape Mount

Part Number	A	B	C	D	E	F
$4-1-20293-01 \mathrm{~K}$	4.6	5	5.5	3.3	2.03	1.25
$4-1-20294-01 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20296-01 \mathrm{~K}$	3	3.5	4	3	2	1.5
$4-1-20493-01 \mathrm{~K}$	2	2.5	3	1.5	1.6	1
$4-1-20494-04 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20494-11 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20494-13 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20496-01 \mathrm{~K}$	4.6	5	5.5	3.3	2	1.25
$4-1-20498-01 \mathrm{~K}$	3	3.5	4	3	2	1.5
$4-1-20498-11 \mathrm{~K}$	2	2.38	2.6	2	2.1	1.3
$4-1-20594-11 \mathrm{~K}$	3	3.5	4	2	2	1.5
$4-1-20598-11 \mathrm{~K}$	2	2.38	2.6	2	2.1	1.3
$4-1-20196-11 \mathrm{~K}$	4.6	5	5.5	3.3	2.03	1.25

Part Number	A	B	C	D	E	F	Mount
$4-1-20494-01 \mathrm{~K}$	2.3			1.32	6	0.86	Tape
$4-1-20294-02 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-05 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-12 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20494-14 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange
$4-1-20594-12 \mathrm{~K}$	3	3.5	4	2	6	1.5	Flange

Wiring Diagrams/Switching NOTE: For brake response times with and without AC rectifiers see page 101

Indicates when the brake is released by sensing the change in the brake coil current waveform. For use with the Series 333/350/360 brakes

Brake Operation

When electrical power is applied to the armature-actuated brake coil, the armature is attracted by the electromagnetic force generated by the magnet body, which overcomes spring action. This allows the friction disc to rotate freely. When electrical power is interrupted, the electromagnetic force is removed and the pressure spring mechanically forces the armature plate to clamp the friction disc between itself and the pressure plate. This develops torque to stop or hold the load.

Switch Operation

When the brake armature is pulled in to the magnet body to release the brake, a change in the brake coil current waveform occurs. By tracking this change in the brake coil current, the electronic switch indicates when the brake is released.

Ordering Information	
List Price	Discount Symbol
$\$ 330.00$	R3

Part Number Example: 4-4-07090-XX

DC Voltage* *	Characters To Insert
24	024
90	090
103	103
180	180
205	205
258	258
414	414

*Standard voltages listed. For other voltages, contact factory.

Specify brake model number. The last 2 digits of the switch part number will depend upon the brake size

NOTE: Cannot be used with half-wave rectifier. Use with full-wave or TOR-AC full-wave rectifier only.

Armature Actuated Brake Modifications

Series 320/321/322

Armature Actuated Brake Modifications

Series 333/350/360

Modification	Series	Brake Size	List Price Adder
Maintained Manual Release			
	333	ALL	size 72 $\$ 86.00$ size 90 $\$ 100.00$ size 112 $\$ 110.00$ size 132 $\$ 126.00$ size 145 $\$ 140.00$ size 170 $\$ 160.00$ size 196 $\$ 300.00$ size 230 $\$ 368.00$ size 278 $\$ 550.00$
	350/360	ALL	Standard feature
Non-Maintained Manual Release			
	333	ALL	size 72 $\$ 86.00$ size 90 $\$ 100.00$ size 112 $\$ 110.00$ size 132 $\$ 126.00$ size 145 $\$ 140.00$ size 170 $\$ 160.00$ size 196 $\$ 300.00$ size 230 $\$ 368.00$ size 278 $\$ 550.00$
0	360	ALL	size 170 $\$ 500.00$ size 196-278 $\$ 600.00$
Electronic Brake Release Indicator Switch			
	333/350/360	ALL	\$660.00
Electronic Wear Indicator Switch	333/350/360	ALL	\$660.00
AC Rectifiers, In-Line	333	size 72-90 115 Vac size 72-112 230 Vac	$\$ 92.00$ standard in-line $\$ 140.00$ in-line quickset
AC Rectifiers, Separate	333/350/360	ALL	see rectifier pages
Conduit Box			
	333/350/360	ALL	\$410.00
	350/360 with IP67 conduit box	ALL	\$720.00

Modification	Series	Brake Size	List Price
Band Seal (Boot)			
	333	ALL	size 72 $\$ 22.00$ size 90 $\$ 24.00$ size 112 $\$ 28.00$ size 132 $\$ 40.00$ size 145 $\$ 68.00$ size 170 $\$ 100.00$ size 196 $\$ 126.00$ size 230 $\$ 150.00$ size 278 $\$ 180.00$
End Cap Plug			
	333	ALL	size 72 $\$ 20.00$ size 90 $\$ 30.00$ size 112 $\$ 40.00$ size 132 $\$ 50.00$ size 145 $\$ 90.00$ size 170 $\$ 90.00$ size 196 $\$ 100.00$ size 230 $\$ 120.00$ size 278 $\$ 150.00$
Space Heater			
	333/350/360	ALL	$\begin{array}{ll}\text { Sizes 72-112 } & \$ 232.00 \\ \text { Sizes 132-278 } & \$ 416.00\end{array}$
Tach Machining			
	333 tapped holes in magnet body for tether mount	ALL	\$50.00
	350/360 Machining on brake housing	ALL	Size 170 $\$ 1,628.00$ Sizes 196-278 $\$ 2,040.00$
Through-Shaft			
	333 through-shaft seal in magnet body	ALL	$\begin{array}{ll}\text { Sizes 72-170 } & \$ 352.00 \\ \text { Sizes 196-278 } & \$ 752.00\end{array}$
	350/360 through-shaft hole in housing with shaft seal	ALL	\$752.00

SAB Motor Frame Adapter Dimensions

Selection

To select an adapter for a specific brake, refer to the Motor Frame Adapter Tables as shown in the brake series sections of this Catalog. After selecting the adapter stock number, refer to the Tables below for dimensions.
All adapters are constructed with an opening for internal lead wire connection, corresponding to the NEMA standard location for the motor frame size.
Screws for mounting adapter to motor must be provided by customer. Socket head cap screws are supplied for mounting brake to adapter.

Brake Series	Torque (lb-ft)	Adapter Stock Number	Dimensions in Inches (Dimensions in Millimeters)											Add'I Shaft Length Req'd	List Price	Discount Symbol
			A	AH	AJ	AK	AL	B	BF	BK Hole	D	F	L			
56,000	1.5-6	5-55-5041-00	$\begin{gathered} 1.25 \\ (31.75) \end{gathered}$	$\begin{gathered} 5.88 \\ (149.22) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{gathered} \frac{8.500}{8.502} \\ \frac{(215.900)}{(215.951)} \end{gathered}$	$\begin{gathered} \frac{4.497}{4.500} \\ \frac{(114.325)}{(114.275)} \end{gathered}$	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{gathered} .50 \\ (12.70) \end{gathered}$	$3 / 8-16 \times 1 / 2$ deep				$\begin{array}{\|c} .94 \\ (23.88) \end{array}$		
65,300*		5-55-5046-00									$\begin{array}{\|c\|} \hline 4.00 \\ (101.60) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .12 \\ (3.18) \end{gathered}$			
$\begin{gathered} 56,000 \\ \text { and } \\ 56,800^{*} \end{gathered}$	10-25	5-55-5043-00													\$700	B4
$\begin{gathered} 87,000 \\ \text { and } \\ 87,800^{*} \\ \hline \end{gathered}$	6-105	5-55-7046-00	$\begin{gathered} 1.06 \\ (26.99) \end{gathered}$	$\begin{array}{c\|} 7.25 \\ (184.15) \end{array}$	$\begin{array}{c\|} \hline 11.00 \\ (279.40) \end{array}$	$\begin{gathered} \frac{12.501}{12.504} \\ \frac{(317.525)}{(317.602)} \end{gathered}$	$\left\|\begin{array}{c} \frac{8.499}{8.497} \\ \frac{(215.875)}{(215.849)} \end{array}\right\|$	$\begin{gathered} 13.00 \\ (330.20) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	1/2-13 through	$\begin{array}{\|c\|} \hline 4.12 \\ (104.78) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .87 \\ (22.10) \end{gathered}$	\$875	B2
87,300		5-55-7054-00														
$\begin{gathered} 87,000 \\ \text { and } \\ 87,800^{*} \end{gathered}$	6-105	5-55-7055-00	$\begin{gathered} 1.00 \\ (25.40) \end{gathered}$		$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\left.\begin{array}{c} \frac{10.500}{10.502} \\ (\underline{(266.700)} \end{array}\right)$	$\begin{array}{\|c} 8.499 \\ 8.497 \\ (215.875) \end{array}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	**		$\begin{array}{\|c\|} \hline 6.25 \\ (158.75) \end{array}$		$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} .81 \\ (20.57) \end{gathered}$	\$450	B2
87,300*		5-55-7045-00				(266.751)	(215.849)									
	6-105	5-55-7043-00	$\begin{gathered} .75 \\ (19.05) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\begin{array}{\|c\|c\|} 5.88 \\ (149.35) \end{array}$	$\begin{gathered} \frac{4.502}{4.507} \\ \hline(114.35) \\ (114.48) \\ \hline \end{gathered}$	$\begin{gathered} \frac{8.499}{8.497} \\ (215.875) \\ \hline(215.849) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 8.75 \\ (222.25) \end{array}$	$\begin{gathered} .62 \\ (15.75) \end{gathered}$	1/2-13 through	$\begin{array}{\|c\|} \hline 4.00 \\ (101.60) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{\|c} .56 \\ (14.23) \end{array}$	\$1,300	B2
81,000	$\begin{gathered} 125- \\ 130 \end{gathered}$	5-55-2045-00	$\begin{gathered} 1.06 \\ (26.99) \end{gathered}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{array}{\|c\|} \hline 14.00 \\ (355.60) \end{array}$	$\begin{aligned} & \hline \frac{16.002}{16.005} \\ & (406.451) \\ & \hline(406.527) \\ & \hline \end{aligned}$	$\begin{gathered} \frac{12.499}{12.496} \\ (317.475) \end{gathered}$	$\begin{gathered} 16.50 \\ (419.10) \end{gathered}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 through	$\begin{gathered} 9.75 \\ (247.65) \end{gathered}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} .87 \\ (22.10) \end{gathered}$	\$1,875	C1
81,000	$\begin{gathered} 125- \\ 230 \end{gathered}$	5-55-2041-00	$\begin{gathered} 1.12 \\ (28.58) \end{gathered}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$		$\begin{aligned} & \frac{12.499}{12.496} \\ & \frac{(317.475)}{(317.398)} \end{aligned}$	$\begin{aligned} & \frac{12.499}{12.496} \\ & \frac{(317.475)}{(317.398)} \end{aligned}$	$\begin{gathered} .50 \\ (12.70) \end{gathered}$	5/8-11 through	$\begin{array}{\|c\|} \hline 6.00 \\ (152.40) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	---	$\begin{array}{\|c} .93 \\ (23.62) \end{array}$	\$1,325	C1
81,000		5-55-2043-00			$\begin{array}{\|c\|c} 9.00 \\ (228.60) \end{array}$	$\frac{10.500}{10.502}$ $\frac{(266.700)}{(266.751)}$					$\begin{array}{\|c\|} \hline 7.75 \\ (196.85) \end{array}$			$\begin{array}{\|c} .93 \\ (23.62) \end{array}$		C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$	$\begin{gathered} 125- \\ 440 \end{gathered}$	5-55-2046-00	$\begin{gathered} 1.94 \\ (49.21) \end{gathered}$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{array}{\|c\|} \hline 14.00 \\ (355.60) \end{array}$	$\frac{16.002}{16.005}$ $\left(\frac{406.451)}{(406.527)}\right.$	$\frac{12.499}{12.496}$$\left(\frac{317.475)}{(317.398)}\right.$	$\begin{aligned} & 16.50 \\ & (419.10) \end{aligned}$	$\begin{gathered} .62 \\ (15.88) \end{gathered}$	5/8-11 x 1 deep	$\begin{array}{\|c} 9.50 \\ (241.30) \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{array}{\|c} .25 \\ (6.35) \end{array}$	$\begin{gathered} 1.75 \\ (44.45) \end{gathered}$	\$1,875	C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$		5-55-2042-00	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$		$\begin{array}{\|c\|} \hline 7.25 \\ (184.15) \end{array}$	$\frac{8.500}{8.502}$ $\frac{(215.900)}{(215.951)}$		$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$	$\begin{gathered} .50 \\ (12.70) \end{gathered}$	5/8-11 through	$\begin{array}{\|c\|} \hline 6.00 \\ (152.40) \end{array}$			$\begin{gathered} 1.19 \\ (30.23) \end{gathered}$	\$1,325	C1
$\begin{gathered} 82,000 \\ \text { and } \\ 82,300^{*} \end{gathered}$		5-55-2044	$\begin{gathered} 1.38 \\ (34.92) \end{gathered}$		$\left\lvert\, \begin{gathered} 9.00 \\ (228.60) \end{gathered}\right.$	$\frac{10.500}{10.502}$ $\frac{(266.700)}{(266.751)}$		$\begin{gathered} 13.25 \\ (336.55) \end{gathered}$			$\begin{array}{\|c\|} \hline 7.75 \\ (196.85) \end{array}$			$\begin{array}{\|c} 1.19 \\ (30.23) \end{array}$	\$2,075	C1
86,000	$\begin{aligned} & 500- \\ & 1000 \end{aligned}$	5-55-6041-00	$\begin{gathered} 1.56 \\ (38.69) \end{gathered}$	$\begin{gathered} 14.00 \\ (355.60) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.00 \\ (379.40) \end{array}$	\qquad		$\begin{gathered} 16.19 \\ (441.16) \end{gathered}$	$\begin{array}{\|c} .62 \\ (15.88) \end{array}$	5/8-11 x 3/4 deep	$\begin{array}{\|c\|} 8.62 \\ (219.08) \\ \hline \end{array}$	$\begin{gathered} .19 \\ (4.76) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{array}{\|c} 1.37 \\ (34.80) \end{array}$	\$2,800	C1

* 1/2-13 flat head screws are supplied with adapter.
** When adding an adapter to a hazardous location brake, refer to the "mounting requirements" on the product page for the recommended brake series for accommodating adapters.

Brake Side

Kits include the foot mounting bracket and hardware to fit the BF mounting holes.

Dimensions for estimating only. For installation purposes, request certified prints.

Brake Series	Torque	Foot Mounting Kit Number	Dimensions in Inches (Dimensions in Millimeters)																		Wgt.	List Price	
			A	AJ	AK	B	BB	BF		C	D	E	FA	FB	G	H	J	K	L	M	Ibs.		
								No.	Thd.											No.			
56,000	1.5-25	5-55-5023-00	$\begin{gathered} 7.00 \\ (177.80) \end{gathered}$	$\left\|\begin{array}{c} 5.88 \\ (149.22) \end{array}\right\|$	$\begin{gathered} \frac{4.499}{4.498} \\ \left(\frac{114.275}{114.249}\right) \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 2.38 \\ (60.32) \end{array} \right\rvert\,$	$\begin{gathered} .12 \\ (3.18) \end{gathered}$	2	3/8-16	$\begin{gathered} 6.50 \\ (165.10) \end{gathered}$	$\begin{gathered} 3.50 \\ (88.90) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.88 \\ (73.02) \end{array}$	$\begin{array}{\|c\|} 1.50 \\ (38.10) \end{array}$	-	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{array}{c\|} .41 \\ (10.32) \end{array}$	$\begin{array}{\|c\|} 1.50 \\ (38.10) \end{array}$	$\begin{array}{\|c} .50 \\ (12.70) \end{array}$	$\begin{gathered} 2.50 \\ (63.50) \end{gathered}$	2	4.5	\$500.00	B4
87,000	6-105	5-55-7021-00	$\left\lvert\, \begin{gathered} 8.62 \\ (219.08) \end{gathered}\right.$	$\left\|\begin{array}{c} 7.25 \\ (184.15) \end{array}\right\|$	$\begin{gathered} \frac{8.499}{8.498} \\ \left(\frac{215.875}{215.849}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	4	1/2-13	$\left\lvert\, \begin{gathered} 8.62 \\ (218.95) \end{gathered}\right.$	$\begin{gathered} 5.00 \\ (127.00) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.56 \\ (90.49) \end{array}$	$\begin{gathered} 2.00 \\ (50.80) \end{gathered}$	-	$\begin{gathered} .38 \\ (9.52) \end{gathered}$	$\begin{gathered} .53 \\ (13.49) \end{gathered}$	$\begin{gathered} 1.62 \\ (41.28) \end{gathered}$	$\begin{array}{\|c} .56 \\ (14.29) \end{array}$	$\begin{gathered} 5.75 \\ (146.05 \end{gathered}$	2	7	575.00	B2
81,000	$125-230$ $125-550$	5-55-2022-00	$\left\|\begin{array}{c} 15.50 \\ (393.70) \end{array}\right\|$	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{gathered} \frac{12.499}{12.498} \\ \left(\frac{317.475}{317.449}\right) \end{gathered}$	$\left\|\begin{array}{c} 7.00 \\ (177.80) \end{array}\right\|$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	4	5/8-11	$\left\lvert\, \begin{gathered} 13.25 \\ (336.55) \end{gathered}\right.$	$\begin{gathered} 8.50 \\ (215.90) \end{gathered}$	$\begin{gathered} 6.88 \\ (174.62) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.00 \\ (50.80) \end{array}$	$\left\|\begin{array}{c} 4.00 \\ (101.60) \end{array}\right\|$	$\begin{array}{\|c} .62 \\ (15.88) \end{array}$	$\begin{gathered} 69 \\ (17.46) \end{gathered}$	$\begin{gathered} 3.00 \\ (76.20) \end{gathered}$	$\begin{array}{\|c\|} \hline .88 \\ (22.22) \end{array}$	$\left\|\begin{array}{c} 9.00 \\ (228.60) \end{array}\right\|$	4	40	1,325.00	C1
86,000	$\begin{aligned} & 500- \\ & 1000 \end{aligned}$	5-55-6021-00	$\left\|\begin{array}{c} 18.25 \\ (463.55) \end{array}\right\|$	$\left\|\begin{array}{c} 14.00 \\ (355.60) \end{array}\right\|$	$\begin{gathered} \frac{16.000}{15.995} \\ \left(\frac{406.400}{406.273}\right) \end{gathered}$	$\left\|\begin{array}{c} 8.00 \\ (203.20) \end{array}\right\|$	$\begin{gathered} .22 \\ (5.56) \end{gathered}$	4	5/8-11	$\begin{array}{\|c\|} 17.00 \\ (431.80) \end{array}$	$\left\lvert\, \begin{gathered} 10.88 \\ (276.22) \end{gathered}\right.$	$\left\|\begin{array}{c} 6.38 \\ (161.92) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 3.38 \\ (85.72) \end{array}$	$\begin{array}{\|c\|} \hline 3.00 \\ (76.20) \end{array}$	$\begin{array}{\|c\|} \hline 1.00 \\ (25.40) \end{array}$	$\begin{gathered} .81 \\ (20.64) \end{gathered}$	$\left\|\begin{array}{c} 4.12 \\ (104.78) \end{array}\right\|$	$\begin{gathered} 1.22 \\ (30.96) \end{gathered}$	$\left\|\begin{array}{c} 8.50 \\ (215.90) \end{array}\right\|$	4	75	3,900.00	C1

Brakes Externally Wired to Motor

C-face motor with double shaft extension.

Stearns Disc Brakes are designed to mount on standard C-face motors having the same dimensions and tolerances on the accessory end as on the drive end. They also mount on foot mounting brackets and machine mounting faces having the same mounting dimensions and tolerances. Some motor accessory end C-face may differ from the drive end.

Dimensions for
rames where AJ is
greater than AK

Drive End Dimensions (Inches)

Frame Designation	AJ	AK	BB Min.	BF Hole			U	AH	Keyseat			Base to Centerline D
				Number	Tap Size	Bolt Penetration Allowance						
									R	ES Min.	S	
42C	3.750	3.000	0.16	4	1/4-20		0.375	1.312	0.328		flat	2.62
48C	3.750	3.000	0.16	4	1/4-20		0.500	1.69	0.453		flat	3.00
56C	5.875	4.500	0.16	4	3/8-16	. .	0.625	2.06	0.517	1.41	0.188	3.50
143TC and 145TC	5.875	4.500	0.16	4	3/8-16	0.56	0.875	2.12	0.771	1.41	0.188	3.50
182TC and 184TC	7.250	8.500	0.25	4	1/2-13	0.75	1.125	2.62	0.986	1.78	0.250	4.50
182 TCH and 184TCH	5.875	4.500	0.16	4	3/8-16	0.56	1.125	2.62	0.986	1.78	0.250	4.50
213TC and 215TC	7.250	8.500	0.25	4	1/2-13	0.75	1.375	3.12	1.201	2.41	0.312	5.25
254TC and 256TC	7.250	8.500	0.25	4	1/2-13	0.75	1.625	3.75	1.416	2.91	0.375	6.25
284TC and 286TC	9.000	10.500	0.25	4	1/2-13	0.75	1.875	4.38	1.591	3.28	0.500	7.00
284TSC and 286TSC	9.000	10.500	0.25	4	1/2-13	0.75	1.625	3.00	1.416	1.91	0.375	7.00
324TC and 326TC	11.000	12.500	0.25	4	5/8-11	0.94	2.125	5.00	1.845	3.91	0.500	8.00
324TSC and 326TSC	11.000	12.500	0.25	4	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	8.00
364TC and 365TC	11.000	12.500	0.25	8	5/8-11	0.94	2.375	5.62	2.021	4.28	0.625	9.00
364TSC and 365TSC	11.000	12.500	0.25	8	5/8-11	0.94	1.875	3.50	1.591	2.03	0.500	9.00
404TC and 405TC	11.000	12.500	0.25	8	5/8-11	0.94	2.875	7.00	2.450	5.65	0.750	10.00
404TSC and 405TSC	11.000	12.500	0.25	8	5/8-11	0.94	2.125	4.00	1.845	2.78	0.500	10.00
444TC and 445TC	14.000	16.000	0.25	8	5/8-11	0.94	3.375	8.25	2.880	6.91	0.875	11.00
444TSC and 445TSC	14.000	16.000	0.25	8	5/8-11	0.94	2.375	4.50	2.021	3.03	0.625	11.00
500 Frame Series	14.500	16.500	0.25	4	5/8-11	0.94	12.50

Tolerances (Inches)

AK Dimension, Face Runout, Permissible Eccentricity of Mounting Rabbet

AK Dimension	Tolerance on AK Dimension		Maximum Face Runout	Maximum Permissible Eccentricity of Mounting Rabbet
	Plus	Minus	0.004	0.004
Less than 12	0.000	0.003	0.007	0.007

Width of Shaft Extension Keyseats

Width of Keyseat	Tolerances	
	Plus	Minus
0.188 to 0.750 , inclusive	0.002	0.000
	0.003	0.000

Shaft Extension Diameters

Shaft Diameter	Tolerances	
	Plus	Minus
0.2500 to 1.5000, inclusive Over 1.5000 to 6.500, inclusive	0.000 0.000	0.0005 0.001

Shaft Runout

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive Over 1.625 to 6.500 , inclusive	0.002
0.003	

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11.

Accessory End

FC face mounting for accessories, including brakes, on the end opposite the drive end of motor. Some motor accessory end C-face may differ from the drive end. Confirm shaft diameter and bolt circle before ordering.

143TFC to 184TFC Frames, Inclusive

213TFC to 326TFC Frames, Inclusive

Dimensions (Inches)

Frame Designation	FAJ	FAK	FBD Max.	FBF Hole			Hole for Accessory Leads	
				Number	Tap Size	Bolt Penetration Allowance		
							DP	Diameter
143TFC and 145TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
182TFC and 184TFC	5.875	4.500	6.50	4	3/8-16	0.56	2.81	0.41
213TFC and 215TFC	7.250	8.500	9.00	4	1/2-13	0.75	3.81	0.62
254TFC and 256TFC	7.250	8.500	10.00	4	1/2-13	0.75	3.81	0.62
284TFC and 286TFC	9.000	10.500	11.25	4	1/2-13	0.75	4.50	0.62
324TFC and 326TFC	11.000	12.500	14.00	4	5/8-11	0.94	5.25	0.62

NOTE: Standards have not been developed for the shaft extenison diameter and length, and keyseat dimensions.

Tolerances* (Inches)

FAK Dimension, Face Runout, Permissible Eccentricity of Mounting Rabbet

FAK Dimension	Tolerance on FAK Dimension		Maximum Face Runout	Maximum Permissible Eccentricity of Mounting Rabbet
	Plus	Minus	0.003	0.004
Less than 12	0.000	0.004		
12 and Larger	0.000	0.005	0.007	0.007

* Tolerance requirement on $56, \mathrm{X} 00$ and 87,000 Series Brake kits is .015 T.I.R. (total indicated runout shaft to motor register face).

Shaft Runout

Shaft Diameter	Maximum Permissible Shaft Runout
0.3750 to 1.625, inclusive Over 1.625 to 6.500, inclusive	0.002
0.003	

SOURCE: ANSI/NEMA Standards Publication No. MG 1-1987; Part 4 and Part 11.

Stearns Recommended Minimum Shaft Diameter by Torque
 Minimum recommended shaft size considers a keyed C1045 steel shaft under dynamic use in a typical spring set brake application.

Torque ft-lb	Minimum Shaft (inches)
0.50	0.250
0.75	0.250
1.5	0.375
3	0.500
6	0.500
10	0.625
15	0.750
25	0.875
35	1.000
50	1.125

Torque ft-lb	Minimum Shaft (inches)
75	1.250
105	1.375
125	1.375
175	1.625
230	1.750
330	2.000
440	2.125
500	2.375
750	2.500
1000	2.750

Torque Nm	Minimum Shaft (mm)
4 Nm	$\varnothing 10 \mathrm{~mm}$
8 Nm	$\varnothing 13 \mathrm{~mm}$
16 Nm	$\varnothing 16 \mathrm{~mm}$
32 Nm	$\varnothing 20 \mathrm{~mm}$
60 Nm	$\varnothing 25 \mathrm{~mm}$
80 Nm	$\varnothing 28 \mathrm{~mm}$
150 Nm	$\varnothing 34 \mathrm{~mm}$
240 Nm	$\varnothing 39 \mathrm{~mm}$
400 Nm	$\varnothing 47 \mathrm{~mm}$

The models listed below were tested for typical set and release times. Times listed below are defined as follows:
$\mathrm{T} 1=$ Total set time to 80% of rated static torque $\mathrm{T} 2=$ Release time, measured as the time from when the power is applied to the brake to the time that the solenoid plunger or armature is fully seated.

NOTE: Times will vary with the motor used, and brakes tested with factory-set air gap. The times shown should be used as a guide only.

SAB T1/T2 Time in Milliseconds

Series	Static Torque lb-ft	Coil Size	T1 AC	T2 AC
56,000	$11 / 2-25$	K4, K4, K4+, M4+	25	14
87,000	$10,15,25,50$	$5 \& 6$	42	20
87,000	$35,75,105$	8	48	20
81,000 82,000	All	9	56	27

Brake and motor are switched separately. All brakes tested in horizontal position. Coil is energized for >24 hours before testing. Ambient temperature $70^{\circ} \mathrm{F}$ at time of test.

AAB Series 333 Times in Milliseconds

Size	Applied Voltage/Type of Switching	T1	T2
72	DC side switching	23	35
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	103	39
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	98	34
90	DC side switching	19	73
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	113	72
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	114	73
	230 Vac connected across motor full wave	357	72
	230 Vac connected across motor /quickset	42	72
112	DC side switching	155	39
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	547	43
	$460 \mathrm{Vac} / \mathrm{ac}$ side switching/half wave	501	54
132	DC side switching	119	100
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	833	101
	460 Vac/ac side switching/half wave	803	106
145	DC side switching	185	186
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	999	192
	460 Vac/ac side switching/half wave	1007	209
	230 Vac connected across motor full wave	1689	192
	230 Vac connected across motor /quickset	368	192
	460 Vac/ac side switching/half wave/With air gap shim	629	223
170	DC side switching	129	163
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	1130	174
	460 Vac/ac side switching/half wave	1140	175
196	DC side switching	96	263
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	920	264
	460 Vac/ac side switching/half wave	957	274
230	DC side switching	131	264
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	1299	236
	460 Vac/ac side switching/half wave	1303	276
	Tor-Ac 230 Vac/ac side switching/full wave	169	295
	Tor-Ac 230 Vac/ac side switching/full wave/ With air gap shim	122	327
	230 Vac connected across motor quickset/quickrelease/with air gap shim	122	145
278	DC side switching	182	388
	$230 \mathrm{Vac} / \mathrm{ac}$ side switching/full wave	1807	389
	460 Vac/ac side switching/half wave	1689	366

English-Metric Conversion Factors

Multiply the base unit by the factor shown to obtain the desired conversion.

Measurement	Base Unit	Factor	Conversion
Length	inch, in (millimeter, mm)	$\begin{aligned} & \hline 25.4 \\ & .03937 \end{aligned}$	(millimeter, mm) inch, in
Torque	pound-feet, lb-ft (newton-meter, Nm) pound-inch, lb-in (newton-meter, Nm) ounce-inch, oz-in (newton-meter, Nm)	1.355818 .73756 .113 8.85 .007062 141.611	(newton-meter, Nm) pound-feet, lb-ft (newton-meter, Nm) pound-inch, lb-in (newton-meter, Nm) ounce-inch, oz-in
Moment of Inertia	pound-feet squared, lb- ft^{2} (kilogram-meter squared, kgm^{2})	$\begin{aligned} & .04214 \\ & 23.73 \end{aligned}$	(kilogram-meter squared, kgm^{2}) pound-feet squared, lb-ft ${ }^{2}$
Kinetic Energy	foot-pound, ft-lb (joule, J)	$\begin{gathered} 1.355818 \\ .73756 \end{gathered}$	(joule, J) foot-pound, ft-lb
Weight	pound, lb (kilogram, kg)	$\begin{gathered} .453592 \\ 2.20462 \end{gathered}$	(kilogram, kg) pound, lb
Horsepower (English)	horsepower, hp (kilowatt, kW)	$\begin{gathered} .7457 \\ 1.341 \end{gathered}$	(kilowatt, Kw) horsepower, hp
Thermal Capacity	horsepower-seconds per minute, hp-sec/min (watts, W)	$\begin{array}{r} 12.42854 \\ .08046 \end{array}$	(watts W) horsepower-seconds per minute, hp-sec/min
Temperature	degrees Fahrenheit, ${ }^{\circ} \mathrm{F}$ (degrees Celsius, ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9 \\ & \left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32 \end{aligned}$	(degrees Celsius, ${ }^{\circ} \mathrm{C}$) degrees Fahrenheit, ${ }^{\circ} \mathrm{F}$

English-English Conversion
 Factors for Thermal Capacity

Base Unit	Multiply by	To Obtain
horsepower	60.0	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{ft}-\mathrm{lb} / \mathrm{sec}$.109	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{ft}-\mathrm{lb} / \mathrm{min}$.0018	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{in}-\mathrm{lb} / \mathrm{sec}$.009	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$
$\mathrm{in}-\mathrm{lb} / \mathrm{min}$.00015	$\mathrm{hp}-\mathrm{sec} / \mathrm{min}$

Decimal Equivalents of Fractions

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.02	.016	$1 / 64$
.03	.031	$1 / 32$
.05	.047	$3 / 64$
.06	.062	$1 / 16$
.08	.078	$5 / 64$
.09	.094	$3 / 32$
.11	.109	$7 / 64$
.12	.125	$1 / 8$
.14	.141	$9 / 64$
.16	.156	$5 / 32$
.17	.172	$11 / 64$
.19	.188	$3 / 16$
.20	.203	$13 / 64$
.22	.219	$7 / 32$
.23	.234	$15 / 64$
.25	.250	$1 / 4$
.27	.266	$17 / 64$
.28	.281	$9 / 32$
.30	.297	$19 / 64$
.31	.312	$5 / 16$
.33	.328	$21 / 64$
.34	.344	$11 / 32$
.36	.359	2364
.38	.375	$3 / 8$

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.39	.391	$25 / 64$
.41	.406	$13 / 32$
.42	.422	$27 / 64$
.44	.438	$7 / 16$
.45	.453	$29 / 64$
.47	.469	$15 / 32$
.48	.484	$31 / 64$
.50	.500	$1 / 2$
.52	.516	$33 / 64$
.53	.531	$17 / 32$
.55	.547	$35 / 64$
.56	.562	$9 / 16$
.58	.578	$37 / 64$
.59	.594	$19 / 32$
.61	.609	$39 / 64$
.62	.625	$5 / 8$
.64	.641	$41 / 64$
.66	.656	$21 / 32$
.67	.672	$43 / 64$
.69	.688	$11 / 16$
.70	.703	$45 / 64$
.72	.719	$23 / 32$
.73	.734	$47 / 64$
.75	.750	$3 / 4$

Decimal Equivalent (Inches)		Fraction (Inches)
2-Place	3-Place	
.77	.766	$49 / 64$
.78	.781	$25 / 32$
.80	.797	$51 / 64$
.81	.812	$13 / 16$
.83	.828	$53 / 64$
.84	.844	$27 / 32$
.86	.859	$55 / 64$
.88	.875	$7 / 8$
.89	.891	$57 / 64$
.91	.906	$29 / 32$
.92	.922	$59 / 64$
.94	.938	$15 / 16$
.95	.958	$61 / 64$
.97	.969	$31 / 32$
.98	.984	$63 / 64$
1.00	1.000	1

SINPAC Switches: Brief Operating Description

For over 75 years, single-phase motors have utilized a mechanical centrifugal switch to switch the start circuit. Inherent characteristics of a mechanical device have made these switches prone to various problems, including tolerances, tolerance buildups, mechanical fatigue, vibration and a host of others that can lead to switch failures and/or performance inconsistency.
Our challenge was to design a reliable solid-state switch to replace the mechanical switch and actuator mechanism, and duplicate the function of connecting and disconnecting the start circuit at particular speeds with the additional benefits of a solid-state device. After considerable research, we decided a successful electronic motor starting switch could be created by sensing the voltages present in the main and start windings.

Until the rotor of a single-phase motor begins to rotate, there is no coupling between its start winding and main winding. When the rotor begins to turn the main winding induces flux in the rotor, which then induces a voltage in the start winding. The voltage induced in the start winding is directly proportional to motor speed.

In Stearns SINPAC Electronic Switches, the voltage across a motor's main winding and the voltage across its start winding are sampled and fed to a comparator. The logic circuitry is designed so that the electronic switch interrupts the start circuit current after the motor has accelerated to the speed at which cut out voltage is developed, generally 75 to 80% of synchronous motor speed. The logic circuitry then shuts down the switch's power stage, which consists of a triac or inverse parallel SCR's. This function is referred to as "cut out." When the start circuit is disconnected, the main winding field then drives the motor's rotor to its running speed.

If the motor encounters an overload, and the motor speed falls to approximately 50\% of its synchronous speed, the SINPAC Switch automatically reconnects the motor's start circuit. This function is referred to as "cut in." Cut in detection circuitry constantly monitors start winding voltage. When the motor's speed falls to the cut in point, the detection circuit causes the control logic to energize the SINPAC Switch's power output stage. The motor then goes through its normal startup procedure, with the start circuit being switched out at a motor
speed approximately 75 to 80% of synchronous speed.

SINPAC Switches are potted and completely sealed, making it impervious to dust, dirt and moisture. The unique speed sensing circuit provides a universal design which allows a few switches to work on most standard motor designs regardless of manufacturer.

Acceptance by Motor Manufacturers

US and foreign motor manufacturers have tested and retested the SINPAC Switch for reliability and quality. Today, many of these manufacturers have begun installing SINPAC Switches on their standard motor lines with more companies ready to make the changeover.

UL Recognition

Most SINPAC Switches have already been recognized under the Component Program of Underwriters Laboratories, Inc. (E-71115). In addition, all switches have internal surge protection which is tested according to ANSI/IEEE
C62.41-1991 Category A3. CSA
Certification LR-6254.

Mounting Options

(1) Electrically Protected. Designed to filter out electrical noise, so there is no concern of random switch malfunction.
(2) Reduced Installation Time. Easy accessible $1 / 4$ inch terminals and mounting, reduce the amount of time required to install SINPAC Switches or to change out mechanical switches.
(3) Restart Capability. When motor speed drops below 50% of synchronous speed, the start winding is brought back into the circuit to reinitiate starting torque.
(4) Soldered Heat Sink. High cycling.
(5) Transient Protection. Transient protection tested per ANSI/IEEE C62.41-1991 Category A3.
(6) Universal Design. $50 / 60 \mathrm{~Hz}$ operation. Will work on 2,4 or 6 pole motors of any manufacturer. Reduced inventory.
(7) Line Voltage Compensation. No modifications or changes are required for line voltage variations. SINPAC Switches will operate in areas susceptible to brown-outs or low voltage due to long wiring runs.

ADDITIONAL FEATURES

- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $149^{\circ} \mathrm{F}$) (for operation between $65^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ ($149^{\circ} \mathrm{F}$ and $185^{\circ} \mathrm{F}$), consult factory.]
- Operating Voltage: 115 Vac SINPAC Switch: 90-130 Vac. For dual voltage motor equipped with center-tapped main winding: $90-130$ Vac or 180-265 Vac. 230 Vac SINPAC Switch: 190-255 Vac.

Typical Applications

Stearns SINPAC Switches are ideal for applications requiring reliable switching of the start circuit in singlephase motors.
Mechanical switches are prone to various problems including mechanical fatigue, tolerances, tolerance build-ups and vibration which can lead to performance inconsistency.
Electronic SINPAC Switches solve all those problems which reduce production downtime in hundreds of applications. Some of these applications are illustrated below:

Some additional applications include:

- Grain Dryers
- Water Equipment
- Power Tools
- Commercial Dryers
- Commercial Washing Machines
- Ice Makers
- Gas Pumps
- Floor Washers
- Bottle Washing Machines
- Floor Sanders
- Poultry Feeding Systems
- Fans, Blowers
- Grinding Machines
- Milking Machines
- Winches

- 50/60 Hz
- Paint Sprayers
- Pressure Sprayers
- Vibrators
- Auger Drives
- Door Openers
- Sump Pumps
- Diaphragm Pumps
- Hermetic Motors
- Rotary Compressors
- Refrigeration Compressors
- Heat Pumps
- Jet Pumps
- Food Processing

Motor hp ratings are typical. For an accurate selection procedure, measure start winding current during a normal start or at locked rotor and select a SINPAC Switch with higher maximum current rating than that measured.

1. Be sure switch series matches motor type.
2. Be sure switch voltage rating matches (start) circuit voltage rating.
3. Selection can be based on actual measurement of start winding current ortwo times the motor nameplate FLA rating.
4. Switch current rating must match or exceed the motor start winding current requirements. Always select a SINPAC Switch with the next higher current rating for:
a) High cycling applications.
b) Long acceleration time.
c) High ambients: Greater than $55^{\circ} \mathrm{C}$.
5. To assure proper motor operation, the voltage across the start winding must reach the SINPAC Switch cut out reference voltage between 70% to 85% of motors synchronous speed.
Caution: SINPAC Switches are line voltage compensated. Changes in the line voltage will not effect system operation unless an overload condition causes reduced running speed, along with reduced voltage across the start winding.
6 . Higher current switches can be used in place of lower rated switches of the same series.

SINPAC Electronic Switch Catalog Numbering System

Start Winding Voltage
blank $=115,2=230$

Series
CVR = Capacitor Start and Capacitor Start/Capacitor Run Motors, $P V=$ Split Phase Only,
$C V$ - Capacitor Start Only, $V R=$ Capacitor Start/Capacitor Run Only, $I R=$ Capacitor Start Instant Reverse

PV Series

Induced voltage across the start winding is directly proportional to motor speed and line voltage. All SINPAC Switches use this voltage to switch the start winding out of the circuit. Your motor with a SINPAC Switch must generate a voltage that is 20% greater than the switch cut in voltage to assure cut out of the start winding. Refer to the chart below.

CV , VR, CVR, and IR Series

Induced voltage across the start winding is directly proportional to motor speed and line voltage. All SINPAC Switches use this voltage to switch the start capacitor out of the circuit. Your motor with a SINPAC Switch must generate a voltage that is 20% greater than the switch cut out voltage to assure cut out of the start capacitor. Refer to charts below.

CVR

> 2CV,
> 2VR, and
> 2CVR

PV and 2PV Series for 115 Vac, 230 Vac or 115/230 Vac Dual Voltage Split Phase Motors

 Dual Voltage Split Phase Motors}

Basic Operation

The PV Series SINPAC uses a pulse sampling technique to monitor RPM-sensitive information (induced voltage) across the motor start winding. After the initial timing period, solid-state logic will sample the induced voltage across the start winding and will repeat this sequence until the voltage across the start winding is above the cut-in reference value. The SINPAC logic circuit continues to monitor the RPMsensitive information (induced voltage) on the start winding. If the SINPAC logic detects that the motor RPM drops below a certain point, it automatically recloses the solid-state switch reconnecting the start winding. Both the initial timing period and cut-in reference value can be modified to meet specific applications.

Typical Maximum Motor hp	Typical Full Load Motor Nameplate Current Rating (amps)		Switch Rating and Permissible Maximum Start Winding Current (amps)	Start Circuit Voltage	Catalog Number	Part Number	Timing Interval* (sec.)	Cut In Voltage Typical	Package Style
	$\begin{gathered} 115 \\ \text { Volts } \end{gathered}$	$\begin{gathered} 115 / 230 \\ \text { Volts } \end{gathered}$							
1/3	8	8/4	16	115	PV-16-10	4-7-11016-11-UF1	. 4	10	11
1/3	8	8/4	16	115	-	4-7-11016-20-UF1	. 4	10	20
1/3	8	8/4	16	115	PV-16-30	4-7-11016-11-U01	. 4	30	11
1/3	8	8/4	16	115	-	4-7-11016-20-U01	. 4	30	20
1/2	-	8	16	230	2PV-16-60	4-7-12016-11-NH1	. 4	60	11
1/2	12	12/6	25	115	PV-25-10	4-7-11025-11-UF1	. 4	10	11
1/2	12	12/6	25	115	-	4-7-11025-20-UF1	. 4	10	20
1/2	12	12/6	25	115	PV-25-30	4-7-11025-11-U01	. 4	30	11
1/2	12	12/6	25	115	-	4-7-11025-20-U01	. 4	30	20
3/4	20	20/10	40	115	PV-40-30	4-7-11040-11-U01	. 4	30	11
3/4	20	20/10	40	115	-	4-7-11040-20-U01	. 4	30	20

*NOTE FOR PV SWITCH APPLICATIONS: Please contact the factory for available other timing intervals or cut in voltages.
-20 Enclosure

Wiring Diagram
-11 Enclosure

Dimensions are for estimating only. Drawings for customer reference are available upon request.

Gasket for -11 Enclosure

M - Motor main winding, ST - Motor start winding

CV Series for 115 Vac or 115/230 Vac Dual Voltage Capacitor Start Motors

Basic Operation

Capacitor start motors require a method to extract speed data from the voltage across the motor start winding. By comparing the start winding RPM-sensitive voltage with the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the motor speed has fallen to cut in speed (usually about 50% of synchronous motor speed).

Typical Maximum Motor hp	Typical Full LoadMotor NameplateCurrent Rating (amps)		Switch Rating and Permissible Maximum Start Capacitor Current (amps)	Start Circuit Voltage	Catalog Number	Part Number*	Cut Out Voltage Typical	Cut In Voltage Typical	Package Style
	115 Volts	$\begin{gathered} \text { 115/230 } \\ \text { Volts } \end{gathered}$							
1/2	8	8/4	16	115	CV-16-130	4-7-21016-XX-UA1	130	30	11 or 20
1/2	8	8/4	16	115	CV-16-147	4-7-21016-XX-UB1	147	37	11 or 20
1/2	8	8/4	16	115	CV-16-165	4-7-21016-XX-U02	165	37	11 or 20
1	12	12/6	25	115	CV-25-130	4-7-21025-XX-UA1	130	30	11 or 20
1	12	12/6	25	115	CV-25-147	4-7-21025-XX-UB1	147	37	11 or 20
1	12	12/6	25	115	CV-25-165	4-7-21025-XX-U02	165	37	11 or 20
2	20	20/10	40	115	CV-40-130	4-7-21040-XX-UA1	130	30	11 or 20
2	20	20/10	40	115	CV-40-147	4-7-21040-XX-UB1	147	37	11 or 20
2	20	20/10	40	115	CV-40-165	4-7-21040-XX-U02	165	37	11 or 20
3	25	25/12.5	50	115	CV-50-130	4-7-21050-XX-UA1	130	30	12 or 20
3	25	25/12.5	50	115	CV-50-147	4-7-21050-XX-UB1	147	37	12 or 20
3	25	25/12.5	50	115	CV-50-165	4-7-21050-XX-U02	165	37	12 or 20

*Specify package style in place of $X X$ in part number. Can be ordered as -11 or -20 style; 50 -amp can be ordered as -12 or -20 style.

Wiring Diagram

Catalog Number	SINPAC Switch Rating	115 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation	230 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation
CV-16 CV-25 CV-40 CV-50 Connect to Capacitor Start Motors			

Cs - Start Capacitor, M - Motor main winding, ST - Motor start winding
-11 Enclosure

-12 Enclosure (50-amp switch)

VR Series for 115 Vac or 115/230 Vac Dual Voltage Capacitor Start/Capacitor Run Motors

Basic Operation

Capacitor start/capacitor run motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start winding. By comparing this start winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out voltage (speed), and reconnects the start circuit whenever the speed sensitive circuit senses the motor voltage (speed) has decreased to a preselected cut in voltage (RPM) level.
Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch. These electrical stresses occur due to the switching of the two capacitors (start and run) that are connected
 in parallel during motor start and may have different voltages at time of restart. These stresses occur at restart with both mechanical and electronic start switches. The VR switch features circuitry designed to eliminate the effects of these conditions.

Typical Maximum Motor hp	Typical Full Load Motor Nameplate Current Rating (amps)		Switch Rating and Permissible Maximum Start Capacitor Current (amps)	Start Circuit Voltage	Catalog Number	Part Number	Cut Out Voltage Typical	Cut In Voltage Typical	Package Style
	$\begin{gathered} 115 \\ \text { Volts } \end{gathered}$	$\begin{gathered} 115 / 230 \\ \text { Volts } \end{gathered}$							
1/2	8	8/4	16	115	VR-16-130	4-7-71016-12-UA1	130	30	12
1/2	8	8/4	16	115	-	4-7-71016-19-UA1	130	30	19
1/2	8	8/4	16	115	VR-16-147	4-7-71016-12-UB1	147	37	12
1/2	8	8/4	16	115	-	4-7-71016-19-UB1	147	37	19
1/2	8	8/4	16	115	VR-16-165	4-7-71016-12-U01	165	37	12
1/2	8	8/4	16	115	-	4-7-71016-19-U01	165	37	19
2	20	20/10	40	115	VR-40-130	4-7-71040-12-UA1	130	30	12
2	20	20/10	40	115	-	4-7-71040-19-UA1	130	30	19
2	20	20/10	40	115	VR-40-147	4-7-71040-12-UB1	147	37	12
2	20	20/10	40	115	-	4-7-71040-19-UB1	147	37	19
2	20	20/10	40	115	VR-40-165	4-7-71040-12-U01	165	37	12
2	20	20/10	40	115	-	4-7-71040-19-U01	165	37	19
3	25	50/25	50	115	VR-50-130	4-7-71050-12-UA1	130	30	12
3	25	50/25	50	115	-	4-7-71050-19-UA1	130	30	19
3	25	50/25	50	115	VR-50-147	4-7-71050-12-UB1	147	37	12
3	25	50/25	50	115	-	4-7-71050-19-UB1	147	37	19
3	25	50/25	50	115	VR-50-165	4-7-71050-12-U01	165	37	12
3	25	50/25	50	115	-	4-7-71050-19-U01	165	37	19

-19 Enclosure

Dimensions are for estimating only. Drawings for customer reference are available upon request.

-12 Enclosure

Wiring Diagram

Catalog Number	SINPAC Switch Rating	115 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation	230 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation
$\begin{aligned} & \text { VR-16 } \\ & \text { VR-40 } \\ & \text { VR-50 } \end{aligned}$ Connect to Capacitor Start/ Capacitor Run Motors			

CVR Series for 115 Vac or 115/230 Vac Dual Voltage Capacitor Start and Capacitor Start/Capacitor Run Motors

Basic Operation

Capacitor start/capacitor run motors and capacitor start motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start winding. By comparing this start winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out voltage (speed), and reconnects the start circuit whenever the speed sensitive circuit senses the motor voltage (speed) has decreased to a preselected cut in voltage (RPM) level.
Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch.
 These electrical stresses occur due to the switching of the two capacitors (start and run) that are connected in parallel during motor start and may have different voltages at time of restart. These stresses occur at restart with both mechanical and electronic start switches. The CVR switch has additional circuitry to eliminate the effects of these conditions.

$\left.$| Typical
 Maximum
 Motor $\mathbf{h p}$ | Typical Full Load
 Motor Nameplate
 Current Rating (amps) | | Switch Rating and
 Permissible
 Maximum Start
 Capacitor
 Current (amps) | Start
 Circuit
 Voltage | Catalog
 Number
 Volts | Volts | Part Number | Cut Out
 Voltage
 Typical | Cut In
 Voltage
 Typical |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Package |
| :---: |
| Style | \right\rvert\,

Dimensions are for estimating only. Drawings for customer reference are available upon request.

Wiring Diagram

[^18]
2CV Series for 230 Vac Capacitor Start Motors 2VR and 2CVR Series for Capacitor Start/Capacitor Run Motors

Basic Operation

Capacitor start/capacitor run motors and capacitor start motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start (auxiliary) winding. By comparing this start (auxiliary) winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the motor speed has decreased to a preselected cut in RPM level. Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch. This electrical stress is due to the voltage differential which may exist between the start and run capacitors at the instant of switch closure. This stress phenomenon occurs with both mechanical and electronic type start switches. SINPAC Switches have voltage detection circuitry to minimize the effects of these conditions.

Motor Type	Typical Max. Motor hp	Typical Full Load Motor Nameplate Current Rating (amps)		Switch Rating and Permissible Maximum Start Capacitor Current (amps)	Start Circuit Voltage	Catalog Number	Part Number	Cut Out Voltage Typical	Cut In Voltage Typical	Package Style
		$\begin{gathered} \hline 115 \\ \text { Volts } \end{gathered}$	$\begin{gathered} 230 \\ \text { Volts } \end{gathered}$							
Capacitor start only	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { 2CV-35-260 } \\ & \text { 2CV-35-310 } \end{aligned}$	$\begin{aligned} & \text { 4-7-22035-15-UC1 } \\ & 4-7-22035-15-U 01 \end{aligned}$	$\begin{aligned} & 260 \\ & 310 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
Capacitor start only	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { 2CV-50-260 } \\ & \text { 2CV-50-310 } \end{aligned}$	$\begin{aligned} & \hline \text { 4-7-22050-15-UC1 } \\ & 4-7-22050-15-\mathrm{U} 01 \end{aligned}$	$\begin{aligned} & 260 \\ & 310 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
Capactitor start capacitor run	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	-	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { 2VR-35-260 } \\ & \text { 2VR-35-310 } \end{aligned}$	$\begin{aligned} & \text { 4-7-72035-15-UC1 } \\ & 4-7-72035-15-U 01 \end{aligned}$	$\begin{aligned} & 260 \\ & 310 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
Capactitor start capacitor run	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & \hline \text { 2VR-50-260 } \\ & \text { 2VR-50-310 } \end{aligned}$	$\begin{aligned} & \text { 4-7-72050-15-UC1 } \\ & 4-7-72050-15-U 01 \end{aligned}$	$\begin{aligned} & 260 \\ & 310 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
Capacitor start AND capacitor start capacitor run	$\begin{aligned} & 71 / 2 \\ & 71 / 2 \end{aligned}$	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { 2CVR-70-260 } \\ & \text { 2CVR-70-310 } \end{aligned}$	$\begin{array}{\|l} \text { 4-7-42070-17-NC1 } \\ \text { 4-7-42070-17-N01 } \end{array}$	$\begin{aligned} & 260 \\ & 310 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$

Wiring Diagram

Catalog Number	SINPAC Switch Rating	115 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation	230 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation
$\begin{gathered} 2 \mathrm{CV} \\ 2 \mathrm{CVR} \end{gathered}$ Connect to Capacitor Start Motors	230 Volts	Not Applicable	
2VR 2CVR Connect to Capacitor Start/ Capacitor Run Motors	$\left(\begin{array}{lllll} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{array}\right.$	Not Applicable	

$\mathbf{C}_{\mathbf{S}}$ - Start capacitor, \mathbf{M} - Motor main winding, $\mathbf{C}_{\mathbf{R}}$ - Run capacitor, $\mathbf{S T}$ - Motor start winding

-15 Enclosure

-17 Enclosure

End view -15 and -17

Basic Operation

Bidirectional motors - those that can rotate in either direction - are of two classes: 1. Reversing motors, which can change from full speed in one direction to full speed in the opposite direction. 2. Reversible motors, which can be reversed only when the motor is not running, or is running below cut out speed. Some motor manufacturers distinguish between quick reversing and instant reversing. A quick reversing motor requires a time delay of approximately $1 / 25$ th of a second or more for the switching circuitry to react. An instant reversing motor requires absolutely no time delay. The standard SINPAC Switch can be used on reversible and reversing motors. The SINPAC IR Series Switch provides the function of a direction sensing centrifugal switch and makes a reversible capacitor start motor into an instant reversing motor.
In order to reverse a single-phase motor, it is necessary to reverse the polarity of either the start or main winding, but not both at the same time. The reversal of the winding is accomplished with an
external reversing switch or contactor that is not part of the SINPAC Switch. SINPAC Instant Reverse Switch is not dependent upon how quickly the user operates the reversing switch, but only that the reversing switch did change states, i.e., forward to reverse, or vice versa. The SINPAC Switch detects the change in the phase shift between the main and start windings, and the logic circuit instantly actuates the starting switch, causing the start circuit to be reconnected to line
 voltage. This connection causes the motor to decelerate and then reaccelerate in the opposite direction. The SINPAC IR Series Switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the circuit senses the motor speed has fallen to cut in speed (usually about 50% of synchronous motor speed).

Typical Maximum Motor hp	Typical Full Load Motor Nameplate Current Rating (amps)		Switch Rating and Permissible Maximum Start Capacitor Current (amps)	Start Circuit Voltage	Catalog Number	Part Number	Cut Out Voltage Typical	Cut In Voltage Typical	Package Style
	Volts	$\mathbf{1 1 5 / 2 3 0}$							
Volts									

Contact factory on IVR series for capacitor start/capacitor run motors.

Wiring Diagram

Catalog Number	SINPAC Switch Rating	115 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation	230 Volt $50 / 60 \mathrm{~Hz}$ Motor Operation
$\begin{aligned} & \text { IR-25 } \\ & \text { IR-40 } \end{aligned}$ Connect to Instant Reverse Start Motors	115 Volts	115 Volt Operation Dual Voltage Motor Using Two Full Voltage 2 or 3 Pole Single-Phase Reversing Contactors with Mechanical Interlock (Electrical Interlock Optional) Reversing contacts are not part of SINPAC Switch.	230 Volt Operation Dual Voltage Motor Using Two Full Voltage 2 or 3 Pole Single-Phase Reversing Contactors with Mechanical Interlock (Electrical Interlock Optional) Reversing contacts are not part of SINPAC Switch.
		Drum switch is not part of SINPAC Switch.	Reversing contacts are not part of SINPAC Switch.

[^19]
TENV/IP54 Super-Mod ${ }^{\circledR}$ Clutch-Brake Modules

Imagine a totally-enclosed, nonventilated clutch-brake ready to work right out of the box, requiring no modifications. And at a price competitive with "open" enclosure clutch-brakes.
TENV Super-Mod will give you extended cycles, enhanced operating efficiency and longer operating life. TENV Super-Mod Modules are well suited for challenging applications where water, moisture, dirt, dust and other airborne pollutants can shorten the life of traditional clutch-brakes.
Examine these key value-added features:

- Cast-aluminum housing that meets IP54 requirements, preventing moisture and dirt from affecting operation of the unit
- Integrally cast, clutch-side magnetic body and endbell provides large heat sink that conducts heat away from coil
- Brake-side magnetic body integrated with cast housing creates a heat exchanger that keeps the brake coil cool
- Unique fan design creates bidirectional air movement within the unit. This stabilizes internal temperatures and eliminates hot spots. The fan is cast into the drive hub and is equally efficient at moving air axially through the housing during motor rotation in either direction
- Depending on the model, between 28 and 60 percent fewer parts than competitive units for enhanced reliability and service life
- Armature assembly features an automatic gap adjustment that maintains a consistent de-energized armature-to-friction-face air gap
- Completely gasketed conduit box resists moisture and spray
- Washdown (IP55) availability in select models

For even better performance, include an optional Tor-ac ${ }^{\text {TM }}$ rectifier for 115 or 230 Vac input. Tor-ac rectifiers connect directly to the AC power source for switching on the AC-side. This eliminates contact arcing, improving the life of associated switching components while providing you with mechanical response times comparable to DC-side switching.
The Stearns TENV Super-Mod Module comes in a wide range of popular sizes with nominal static torque ratings from 16 and $145 \mathrm{lb}-\mathrm{ft}$. Each unit is designed as an exact drop-in replacement, so you can upgrade today or at your next regularly scheduled maintenance shutdown.

Super-Mod ${ }^{\circledR}$ Clutch-Brake Modules

How To Select The Proper
 Unit For Your Application

BACK TO TABLE OF CONTENTS
$1^{\text {st }}$
Select the appropriate configuration based on the relationship with the motor, gearbox and drive components.

C-face mounted brake, clutch or clutch-brake, module (20, 1020 or 1040)

C-face mounted brake, clutch, or clutch-brake module. Mounted between moto and gearbox $(20,1020$, or 1040)

Determine if the application requires clutching only, braking only or a clutchbrake combination

Clutch Only

Provides a start and/or continuous motion until the control logic disengages (removes the power or voltage from the unit's coil).

NOTE: The load will coast since no braking action is provided.

Brake Only

Provides a stop and hold, typically of a motor shaft, until the control logic disengages (removes the power or voltage from the unit's coil).

Clutch-Brake

Provides a start-stop motion used for cycling, intermediate or random motion and controls a load or machine element. Both the clutch and brake coils are electrically engaged (power on), however, the control logic should not signal both coils to be engaged at the same time.
$3^{\text {rd }}$ Select the proper size/torque rating based on horsepower and RPM (speed at the clutch or brake) using the Super-Mod Selection Chart to the right. Based on 2.75 service factor.

For other service factors and speeds, use the formulas shown to the far right.
CAUTION: RPM refers to shaft speed at clutch or brake.

Note: Frame size and shaft diameter may affect selection and should be considered. See manufacturer's dimensional and sizing information.

Super-Mod Selection Chart

Where:
$\mathrm{T}_{\mathrm{d}}=$ Average dynamic torque, lb-ft
P = Horsepower, HP
$\mathrm{N}=$ Shaft speed
differential at clutch
and/or brake components, RPM

SF = Service factor
5252 = Constant

$4^{\text {th }}$

Ensure that the unit can properly dissipate the heat generated by the application. Thermal capacity can be calculated as follows:

$$
E=1.7 \times W R^{2} \times\left(\frac{N}{100}\right)^{2} \times F
$$

E = Energy (heat) which needs to be dissipated in foot pounds per minute
(ft-lb/min) for the application requirement.
$\mathrm{WR}^{2}=$ Total reflected inertia at clutch-brake shaft location. This should include clutch-brake inertia.

Inertia (lb-ft²)	SM 50, 100, 180	SM 210, 250
Clutch/Brake	0.063	0.144
Clutch Only	0.04	0.08
Brake Only	0.035	0.08

$\mathrm{N}=$ Speed differential in revolutions per minute at the clutch-brake shaft.
F = Number of cycles per minute (cycle rate)

The thermal capacity requirements calculated should be compared to the thermal capacity ratings. Exceeding this rating could cause overheating and possible failure. SM 50-100-180 can accommodate 5,000 ft-lb/min; SM-210 7,000 ft-lb/min; and SM-250 5,600 ft-lb/min.

5

th Options
Select any other options you may require.

Tor-ac Kit

Single-channel, solid-state, quick-response rectifier circuit can be mounted in any SM unit which allows you to switch on the AC-side with mechanical response times comparable to traditional DC-side switching.

Adapter Kit

An input adapter kit can be stocked which gives you immediate flexibility to modify to double shafted configurations. See page 115 for ordering and dimensional information.

Base Kit

A base kit can be added to clutch only (1040) or clutch-brake (1020) units. See page 16 for ordering and dimensional information.

6
 Special Applications

Low Speed

Application of clutches and brakes at speeds of 300 RPM or less may not permit sufficient burnishing or run-in to occur, the result being reduced and erratic torque output. For these applications, we suggest using a unit which has a static torque rating of at least two times the calculated torque requirement.

High Cycle Rates

Applications where high cycle rates are required could result in heat being generated
which is in excess of the unit's capability to dissipate. The thermal capacity requirement equation should be used to size the clutch and/or brake for this type of application. High cycle rates may also require special highspeed controls.

Washdown

For applications requiring regular washdown, such as food processing or other wet, highhumidity environments use the Super-Mod TENV Washdown Clutch-Brake Modules.

- Models in most popular sizes with nominal static torque ratings of 16 and $35 \mathrm{lb}-\mathrm{ft}$.
- Fully neoprene gasketed with BISSC approved white epoxy paint.

Soft Starts And/Or Stops

While the Stearns Gap feature is desirable in most applications, there are some situations where it should be disabled, such as very soft starts and/or stops achieved with low voltage energizing of the coil. For applications where the voltage will be varied to below 75% of the coil rating, request that the Stearns Gap feature be disabled.

Super-Mod ${ }^{\circledR}$ Clutch-Brake Modules: SM-1020, SM-1020WD (Washdown) and SM-2030B

- 56C through 215TC NEMA Frame Sizes
- 16 through $145 \mathrm{lb}-\mathrm{ft}$ Static Torque; 2400 Maximum RPM
- TENV - Totally Enclosed (Non-Ventilated) IP-54 Enclosure Protection, (IP-55 for Washdown Units)
- Listed by Underwriters Laboratories, Inc., File E-71115 and CSA Certified, File LR-6254
*See Series 56,700 and 87,700 for power-off "fail safe" C-face coupler units
- Power-On Clutch and Brake* Engagement
- Maximum Overhung load capacity is 85 lbs

Performance Data, Ordering Information and List Prices (Discount Symbol X-8)

Static Torque lb-ft	Dynamic Torque lb-ft	NEMA Frame	Hub bore and shaft diameter	Model	Part Number ${ }^{(1)}$	Thermal Capacity (ft-lb/min) (2)	Wt. (lbs)	Maximum Electrical Power (watts)	$\begin{gathered} \text { List } \\ \text { Price }{ }^{3} \end{gathered}$
16	10	56C	5/8 hub bore 5/8 shaft	SM-50-1020	2-35-0561-01-A*L	5000	20	19	\$1250.00
16	10	56C		SM-50-1020B	2-35-0561-01-B*L	5000	22	19	1306.00
16	10	56C		SM-50-1020WD	2-35-0562-01-A*L	5000	20	19	1526.00
16	10	56C		SM-50-2030	2-35-0561-01-C*L	5000	24	19	1426.00
16	10	56C		SM-50-2030B	2-35-0561-01-D*L	5000	24	19	1482.00
35	20	56C		SM-100-1020	2-35-0561-02-A*L	5000	20	29	1586.00
35	20	56C		SM-100-1020B	2-35-0561-02-B*L	5000	22	29	1642.00
35	20	56C		SM-100-1020WD	2-35-0562-02-A*L	5000	20	29	1834.00
35	20	56C		SM-100-2030	2-35-0561-02-C*L	5000	24	29	1876.00
35	20	56C		SM-100-2030B	2-35-0561-02-D*L	5000	24	29	1934.00
35	20	140TC	7/8 hub bore 7/8 shaft	SM-180-1020	2-35-1401-02-A*O	5000	20	29	1586.00
35	20	140TC		SM-180-1020B	2-35-1401-02-B*O	5000	22	29	1666.00
35	20	140TC		SM-180-1020WD	2-35-1402-02-AJO	5000	20	29	1934.00
35	20	140TC		SM-180-2030	2-35-1401-02-C*O	5000	24	29	1876.00
35	20	140TC		SM-180-2030B	2-35-1401-02-D*O	5000	24	29	1956.00
75	44	180TC	1-1/8 hub bore 1-1/8 shaft	SM-210-1020	2-35-1801-03-A*R	7000	31	16	2824.00
75	44	180TC		SM-210-1020B	2-35-1801-03-B*R	7000	31	16	2944.00
75	44	180TC		SM-210-2030	2-35-1801-03-C*R	7000	37	16	3362.00
75	44	180TC		SM-210-2030B	2-35-1801-03-D*R	7000	37	16	3484.00
145	86	210TC	1-3/8 hub bore 1-3/8 shaft	SM-250-1020	2-35-2101-04-A*U	5600	37	38	3072.00
145	86	210TC		SM-250-1020B	2-35-2101-04-B*U	5600	37	38	3192.00
145	86	210TC		SM-250-2030	2-35-2101-04-C*U	5600	37	38	3764.00
145	86	210TC		SM-250-2030B	2-35-2101-04-D*U	5600	37	38	3886.00

(2) Thermal capacity rating is based on ambient temperature of $70^{\circ} \mathrm{F}$ at 1750 RPM.
(3) List prices subject to change without notice.

(1) Example of a complete part number:	Series	Character	Description
	SM-1020	A	Basic Unit - Direct Couple
	SM-1020B	B	Basic Unit Plus Base
	SM-2030	C	Basic Unit Plus Clutch Input Adapter
Specials available upon request. Consult factory for list price adder.	SM-2030B	D	Basic Unit Plus Base \& Clutch Input Adapter
	SM-1020WD		IP-55 Washdown (available in NEMA frame sizes 56C-145TC)

Voltage Table

Character	Voltage	List Adder
C	12 Vdc	
E	$24-28 \mathrm{Vdc}$	none
J	$90-100 \mathrm{Vdc}$	
N	115 Vac	$\$ 184.00$
P	230 Vac	220.00

Hub Size Table for SM-1020's

Character	Bore	Keyway
L	$5 / 8$	$3 / 16 \times 3 / 32$
O	$7 / 8$	$3 / 16 \times 3 / 32$
R	$11 / 8$	$1 / 4 \times 1 / 8$
U	$13 / 8$	$5 / 16 \times 5 / 32$

- 56C through 215TC NEMA Frame Sizes
- 16 through $145 \mathrm{lb}-\mathrm{ft}$ Static Torque; 2400 Maximum RPM
- TENV - Totally Enclosed (Non-Ventilated) IP-54 Enclosure Protection, (IP-55 for Washdown Units)
- Listed by Underwriters Laboratories, Inc., File E-71115 and CSA Certified, File LR-6254
- Maximum overhung load capacity is 85 lbs

Performance Data, Ordering Information and List Prices (Discount Symbol X-8)

$\begin{gathered} \text { Static } \\ \text { Torque } \\ \mathrm{lb} \text {-ft } \end{gathered}$	Dynamic Torque lb -ft	NEMA Frame	Hub bore and shaft diameter	Model	Part Number ${ }^{\text {(1) }}$	Thermal Capacity (ft-lb/min) (2)	Wt. (lbs)	Maximum Electrical Power (watts)	List Price ${ }^{(3)}$
16	10	56C	5/8 hub bore 5/8 shaft	SM-50-1040	2-36-0561-01-A*L	5000	20	19	\$1046.00
16	10	56C		SM-50-1040B	2-36-0561-01-B*L	5000	22	19	1102.00
16	10	56C		SM-50-1040WD	2-36-0562-01-A*L	5000	20	19	1276.00
16	10	56C		SM-50-3040	2-36-0561-01-C*L	5000	20	19	1222.00
16	10	56C		SM-50-3040B	2-36-0561-01-D*L	5000	24	19	1278.00
35	20	56C		SM-100-1040	2-36-0561-02-A*L	5000	20	29	1338.00
35	20	56C		SM-100-1040B	2-36-0561-02-B*L	5000	22	29	1394.00
35	20	56C		SM-100-1040WD	2-36-0562-02-A*L	5000	22	29	1632.00
35	20	56C		SM-100-3040	2-36-0561-02-C*L	5000	22	29	1626.00
35	20	56C		SM-100-3040B	2-36-0561-02-D*L	5000	24	29	1684.00
35	20	140TC	7/8 hub bore 7/8 shaft	SM-180-1040	2-36-1401-02-A*O	5000	20	29	1338.00
35	20	140TC		SM-180-1040B	2-36-1401-02-B*O	5000	22	29	1418.00
35	20	140TC		SM-180-1040WD	2-36-1402-02-A*O	5000	20	29	1632.00
35	20	140TC		SM-180-3040	2-36-1401-02-C*O	5000	22	29	1626.00
35	20	140TC		SM-180-3040B	2-36-1401-02-D*O	5000	24	29	1706.00
75	44	180TC	$\begin{gathered} 1-1 / 8 \text { hub } \\ \text { bore } \\ 1-1 / 8 \text { shaft } \end{gathered}$	SM-210-1040	2-36-1801-03-A*R	7000	31	16	2374.00
75	44	180TC		SM-210-1040B	2-36-1801-03-B*R	7000	31	16	2496.00
75	44	180TC		SM-210-3040	2-36-1801-03-C*R	7000	31	16	2916.00
75	44	180TC		SM-210-3040B	2-36-1801-03-D*R	7000	31	16	3036.00
145	86	210TC	$\left\lvert\, \begin{gathered} 1-3 / 8 \text { hub } \\ \text { bore } \\ 1-3 / 8 \text { shaft } \end{gathered}\right.$	SM-250-1040	2-36-2101-04-A* ${ }^{\text {U }}$	5600	31	38	2600.00
145	86	210TC		SM-250-1040B	2-36-2101-04-B*U	5600	31	38	2720.00
145	86	210TC		SM-250-3040	2-36-2101-04-C*U	5600	31	38	3228.00
145	86	210TC		SM-250-3040B	2-36-2101-04-D*U	5600	31	38	3348.00

(2) Thermal capacity rating is based on ambient temperature of $70^{\circ} \mathrm{F}$ at 1750 RPM .
(3) List prices subject to change without notice.

Options - Features Table

(1) Example of a complete part number:
$2-36-0561-01-\mathrm{AJL}-5 / 8$ hub
$90-100 \mathrm{Vdc}$

Basic unit
0

$2=$ Standard Unit
$2=$ Without Gap Adjust

Specials available upon request.
Consult factory for list price adder.

Voltage Table

Character	Voltage	List Adder
C	12 Vdc	
E	$24-28 \mathrm{Vdc}$	none
J	$90-100 \mathrm{Vdc}$	
N	115 Vac	$\$ 92.00$
P	230 Vac	110.00

Hub Size Table for SM-1040's

Character	Bore	Keyway
L	$5 / 8$	$3 / 16 \times 3 / 32$
O	$7 / 8$	$3 / 16 \times 3 / 32$
R	$11 / 8$	$1 / 4 \times 1 / 8$
U	$13 / 8$	$5 / 16 \times 5 / 32$

Super-Mod ${ }^{\circledR}$ Brake Only Modules:
 SM-20, SM-20WD (Washdown) and SM-20MB

- 56C through 215TC NEMA Frame Sizes
- 16 through $145 \mathrm{lb}-\mathrm{ft}$ Static Torque; 2400 Maximum RPM
- TENV - Totally Enclosed (Non-Ventilated) IP-54 Enclosure Protection, (IP-55 for Washdown Units)
*See Series 56,700 and 87,700 for power-off "fail safe" C-face coupler units
- Listed by Underwriters Laboratories, Inc., File E-71115 and CSA Certified, File LR-6254
- Power-On Brake* Engagement
- Maximum overhung load capacity is 85 lbs .

Performance Data, Ordering Information and List Prices (Discount Symbol X-8)

Static Torque lb-ft	Dynamic Torque lb-ft	NEMA Frame	Hub bore and shaft diameter	Model	Part Number ${ }^{(1)}$	Thermal Capacity (ft-lb/min) (2)	Wt. (lbs)	Maximum Electrical Power (watts)	$\begin{gathered} \text { List } \\ \text { Price }{ }^{3} \end{gathered}$
16	10	56C	5/8 hub bore 5/8 shaft	SM-50-20	2-37-0561-01-A*L	5000	11	19	\$ 720.00
16	10	56C		SM-50-20WD	2-37-0562-01-A*	5000	11	19	878.00
16	10	56C		SM-50-20MB	2-37-0561-01-X*L	5000	10	19	660.00
35	20	56C		SM-100-20	2-37-0561-02-A*L	5000	11	29	916.00
35	20	56C		SM-100-20WD	2-37-0562-02-A*	5000	11	29	1118.00
35	20	56C		SM-100-20MB	2-37-0561-02-X*L	5000	10	29	892.00
35	20	140TC	7/8 hub bore 7/8 shaft	SM-180-20	2-37-1401-02-A*O	5000	12	29	916.00
35	20	140TC		SM-180-20WD	2-37-1402-02-A*O	5000	12	29	1118.00
35	20	140TC		SM-180-20MB	2-37-1401-02-X*O	5000	11	29	892.00
75	44	180TC	$\begin{gathered} \text { 1-1/8 hub } \\ \text { bore } \\ 1-1 / 8 \text { shaft } \end{gathered}$	SM-210-20	2-37-1801-03-A*R	7000	15	16	1784.00
75	44	180TC		SM-210-20MB	2-37-1801-03-X*R	7000	15	16	1714.00
145	86	210TC	$\begin{aligned} & 1-3 / 8 \text { hub } \\ & \text { bore } \\ & 1-3 / 8 \text { shaft } \end{aligned}$	SM-250-20	2-37-2101-04-A* ${ }^{\text {a }}$	5600	18	38	1986.00
145	86	210TC		SM-250-20MB	2-37-2101-04-X*U	5600	18	38	1906.00

(2) Thermal capacity rating is based on ambient temperature of $70^{\circ} \mathrm{F}$ at 1750 RPM.
(3) List prices subject to change without notice.

(1)Example of a complete part number:	Options - Features Table		
	Series	Character	Description
	SM-20	A	Basic Unit - Coupler
	SM-20MB	X	No Shaft (end mount motor brake)
	SM-20WB		IP-55 Washdown (available in NEMA frame sizes 56C-145TC)

Voltage Table

Character	Voltage	List Adder
C	12 Vdc	
E	$24-28 \mathrm{Vdc}$	none
J	$90-100 \mathrm{Vdc}$	
N	115 Vac	$\$ 92.00$
P	230 Vac	110.00

Hub Size Table for SM-20's

Character	Bore	Keyway
L	$5 / 8$	$3 / 16 \times 3 / 32$
O	$7 / 8$	$3 / 16 \times 3 / 32$
R	$11 / 8$	$1 / 4 \times 1 / 8$
U	$13 / 8$	$5 / 16 \times 5 / 32$

Super-Mod ${ }^{\circledR}$ Conversion Kits

Base Kit Dimensional Data (In Inches)
Base Kits Cannot Be Used On Brake Only (20 and 20MB)

Series	A	B	C	D	E	F	G	H	L	W	Bolt Size
SM-50/100B	.54	6.00	5.00	5.25	4.00	.41	.78	3.50	2.02 1.98	1.914 1.910	$3 / 8 "-16 x^{3} / 4 "$ hex head
SM-180B	1.54	6.00	5.00	5.25	4.00	.41	.78	4.50	2.02 1.98	1.914 1.910	$3 / 8 "-16 x^{3} / 4 "$ hex head
SM-210/250B	.80	9.00	7.75	8.00	6.00	.54	.78	5.26	3.13 3.12	3.865 3.855	$3 / 8 "-16 x 1^{\prime \prime}$ socket head

Ordering Information and List Prices

Catalog Number	Part Number	Option	List Price Adder	Discount Symbol	
Base Kits (Base Kits Cannot Be Used On Brake Only - 20 and 20MB)					
SM-50/100B	5-78-1101-01	SM-50 and SM-100 Series	\$ 56.00	X-8	
SM-180B	S-78-1101-02	SM-180 Series	79.00	X-8	
SM-210B	$5-78-0001-30$	SM-210 and SM-250 Series	120.00	X-8	
Input Adapter Kits					
SM-50/100A	$5-78-6100-31$	SM-50 and SM-100 Series	174.00	X-8	
SM-180A	$5-78-6100-32$	SM-180 Series	290.00	X-8	
SM-210A	$5-78-0000-23$	SM-210 Series	548.00	X-8	
SM-256A	$5-78-0000-24$	SM-250 Series	692.00	X-8	

Rectifiers Performance/List Price Data

	Catalog Number	Part Number	AC Input Voltage	Nominal DC Output			List Price (3)	Discount Symbol
				Volts	Max. Amps (2)	Max. Watts		
SM-Tor-ac(1)	SBC-100-1	4-1-20194-00K	$11550-60 \mathrm{~Hz}$	100	. 4	40	\$92.00	X-8
SM-Tor-ac(1)	SBC-200-1	4-1-20290-00K	$23050-60 \mathrm{~Hz}$	100	. 4	80	110.00	X-8

(1)Use with 90-100 Vdc "J" coils only
(2) Based on ambient temperature of $149^{\circ} \mathrm{F}$.
(3) List prices subject to change without notice.

Mechanical Flexibility through Conversion Kits

Super-Mod units are stocked in a wide range of configurations and voltages. Additionally, to keep your inventory down and provide quick shipments, Super-Mod provides the answer with inexpensive, easy to use, stock conversion kits. Stock either the base kit, adapter kit, Tor-ac kit or all of them and you can quickly modify your standard clutch (1040), or clutch-brake (1020) into almost any configuration (2030TB, 3040B for example).
Super-Mod is an innovative product. When combined with your equipment, it provides added value through increased reliability and reduced inventory.
Input Adapter Kit (For use with Super-Mod only)
Dimensional Data (In Inches)

Series	AK	A	B	C	Keyway	SL
SM-50/100A	4.50	2.78	1.41	$.625 / .624$	$3 / 16 \times{ }^{3} / 32$	$1.785-2.014$
SM-180A	4.50	2.84	1.41	$.875 / .874$	$3 / 16 \times 3 / 16$	$1.792-2.022$
SM-210A	8.50	3.33	1.78	$1.125 / 1.124$	$1 / 4 \times 1 / 4$	$2.439-2.489$
SM-250A	8.50	3.87	2.41	$1.375 / 1.374$	$5 / 16 \times 5 / 16$	$2.929-2.979$

SM Tor-ac ${ }^{\text {™ }}$ Kit

Single channel, solid-state, quick response rectifier circuit can be mounted in any SM unit. Lets you switch on the AC-side, with mechanical response times equal to traditional DC-side switching.

SM-1020, SM-1040, SM-20 and SM-20MB

NEMA C-Face Frame Size	Configuration	Basic Module Style	Basic Model Number	AJ	AK	Hub Bore and Shaft \varnothing	Keyway	A	B	C	D	E	P	T	U	V
SM-50 SM-100 56C 5/8 hub bore $5 / 8$ shaft	C-Face Clutch/Brake	1020	2-35-056X-0X-A*L	5.875	4.5	5/8	$3 / 16 \times 3 / 32$	4.71	2.06		6.9	. 16	3.15	2.8	4.9	3.0
	C-Face Clutch Only	1040	2-36-056X-0X-A*L							6.77						
	C-Face Brake Only	20	2-37-056X-0X-A*L					3.14		5.2			2.92			
	C-Face Brake Only without Shaft	20MB	2-37-056X-0X-X*L						-	-		-				
$\begin{aligned} & \text { SM-180 } \\ & 145 \mathrm{TC} \\ & \text { 7/8 hub bore } \\ & 7 / 8 \text { shaft } \end{aligned}$	C-Face Clutch/Brake	1020	2-35-140X-02-A*O	5.875	4.5	7/8	$3 / 16 \times 3 / 32$	4.71	2.12		6.9	. 16	3.15	3.8	4.9	3.0
	C-Face Clutch Only	1040	2-36-140X-02-A*O													
	C-Face Brake Only	20	2-37-140X-02-A*O					3.14		5.25			1.58			
	C-Face Brake Only without Shaft	20MB	2-37-140X-02-X*O						-	-		-				
	C-Face Clutch/Brake	1020	2-35-1801-03-A*R								9	. 25	2.83	4	7.4	4.63
182TC	C-Face Clutch Only	1040	2-36-1801-03-A*R						2.59							
1-1/8 hub bore	C-Face Brake Only	20	2-37-1801-03-A*R					4.61		7.2			2.17			
	C-Face Brake Only without Shaft	20MB	2-37-1801-03-X*R						-	-		-				
SM- 250213TC215TC1-3/8 hub bore1-3/8 shaft	C-Face Clutch/Brake	1020	2-35-2101-04-A*	7.25	8.5	1-3/8	5/16 x 5/32	6.11	3.03	9.14	9	. 25	2.83	4	7.4	4.63
	C-Face Clutch Only	1040	2-36-2101-04-A*													
	C-Face Brake Only	20	2-37-2101-04-A*					4.61		7.64			2.17			
	C-Face Brake Only without Shaft	20MB	2-37-2101-04-X*U						-	-		-				

SM-2030B and SM-3040B

$\begin{gathered} \text { NEMA } \\ \text { C-Face } \\ \text { Frame Size } \end{gathered}$	Configuration	Basic Module Style	Basic Model Number	Shaft \varnothing	Keyway	B	D	E	F	G	H	I	J	K	M	N	0	T	U	V
$\begin{gathered} \text { SM50 } \\ \text { SM100 } \\ 56 \mathrm{C} \\ 5 / 8 \text { shaft } \end{gathered}$	Base Mount Clutch/BrakeDouble Shaft	2030B	2-35-056X-0X-D*L	5/8	$\begin{gathered} 3 / 16 x \\ 3 / 32 \end{gathered}$	2.06	6.9	. 16	2.76	4	5.9	9.55	3.5	8.4	6	0.5	2.5	3.8	4.9	5.25
	Base Mount Clutch OnlyDouble Shaft	3040B	2-36-056X-0X-D*L	5/8	$\begin{gathered} 3 / 16 x \\ 3 / 32 \end{gathered}$															
$\begin{aligned} & \text { SM-180 } \\ & \text { 143TC } \\ & \text { 145TC } \\ & 7 / 8 \text { shaft } \end{aligned}$	Base Mount Clutch/BrakeDouble Shaft	2030B	2-35-140X-0X-D*O	7/8	$\begin{gathered} 3 / 16 x \\ 3 / 32 \end{gathered}$	2.12	6.9	. 16	2.82	4	5.9	9.61	4.5	9.4	6	0.5	2.5	3.8	4.9	5.25
	Base Mount Clutch OnlyDouble Shaft	3040B	2-36-140X-0X-D*O	7/8	$\begin{gathered} 3 / 16 x \\ 3 / 32 \end{gathered}$															
$\begin{gathered} \text { SM-210 } \\ \text { 182TC } \\ \text { 184TC } \\ \text { 1-1/8 shaft } \end{gathered}$	Base Mount Clutch/BrakeDouble Shaft	2030B	2-35-1801-03-D*R	1-1/8	$\begin{gathered} 1 / 4 \mathrm{x} \\ 1 / 8 \end{gathered}$	2.59	9	. 25	3.41	6	6.91	12.09	5.25	12.65	9	0.63	3.87	4	7.4	8
	Base Mount Clutch OnlyDouble Shaft	3040B	2-36-1801-03-D*R	1-1/8	$\begin{gathered} 1 / 4 \mathrm{x} \\ 1 / 8 \end{gathered}$															
$\begin{gathered} \text { SM-250 } \\ \text { 213TC } \\ \text { 215TC } \\ \text { 1-3/8 shaft } \end{gathered}$	Base Mount Clutch/BrakeDouble Shaft	2030B	2-35-2101-04-D*U	1-3/8	$\begin{gathered} 5 / 16 x \\ 5 / 32 \end{gathered}$	3.03	9	. 25	3.88	6	6.91	12.97	5.25	12.65	9	0.63	3.87	4	7.4	8
	Base Mount Clutch OnlyDouble Shaft	3040B	2-36-2101-04-D*U	1-3/8	$\begin{gathered} 5 / 16 x \\ 5 / 32 \end{gathered}$															

Introduction

Information and guidelines provided in the application section are intended for general selection and application of spring set brakes. Unusual operating environments, loading or other undefined factors may affect the proper application of the product. Stearns application services are available to assist in proper selection or to review applications where the specifier may have questions.
A spring set brake is used to stop and hold a rotating shaft. Generally the brake is mounted to an electric motor, but can also be mounted to gear reducers, hoists, machinery or utilize a foot mount kit.
The brake should be located on the high speed shaft of a power transmission system. This permits a brake with the lowest possible torque to be selected for the system.
Spring set disc brakes use friction to stop (dynamic torque) and hold (static torque) a load. Energy of the motor rotor and moving load is converted to thermal energy (heat) in the brake during deceleration. The brakes are power released, spring applied. No electrical current is required to maintain the spring set condition.
The system designer will need to consider the mount surface and match the brake to the load and application. Factors include: brake torque, stopping time, deceleration rate, load weight and speed, location and environment. Brake thermal ratings, electrical requirements and environmental factors are discussed in separate sections.

Electrical Considerations

Solenoid actuated brakes (SAB's) are available with standard motor voltages, frequencies and Class B or H coil insulation. Most models can be furnished with either single or dual voltage coils. Coils in most models are field replaceable.
Inrush and holding amperage information is published for the common coil voltages and factory available for other voltages or frequencies. Amperage information for specific coil sizes is provided for selection of wire size and circuit protection at brake installation. Fixed voltage $-50 / 60 \mathrm{~Hz}$ dual frequency coils are available in many models.
All SAB AC coils are single phase and can be wired to either single or three phase motors without modifications. All solenoid coils have a voltage range of $+/-10 \%$ of the rated nameplate voltage at the rated frequency. Instantaneous rated voltage must be supplied to the coil to insure proper solenoid pull in and maximum coil cycle rate. The plunger rapidly seats in the solenoid and the
amperage requirements drops to a holding amperage value.
Instantaneous voltage must be supplied to the coil to insure proper solenoid pull-in and maximum coil cycle rate.
Because Stearns Solenoid Actuated Brakes (SAB's) require low current to maintain the brake in the released position, the response time to set the brake can be affected by EMF voltages generated by the motor windings. It may be necessary to isolate the brake coil from the motor winding.
The solenoid coil cycle rate limits the engagements per minute of a static or holding duty brake. Brake thermal performance, discussed in another section, limits engagements per minute in dynamic applications.
Class B insulation is standard in most SAB models, class H coil insulation is optional and is recommended for environments above $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, or rapid cycling applications.
Armature actuated brakes (AAB's) are available in standard DC voltages. Available AC rectification is listed in the catalog section. Wattage information is provided in the catalog pages. Unlike solenoid actuated brakes, armature actuated brakes do not have inrush amperage. Coil and armature reaction time and resulting torque response time information is available. Like SAB, mechanical reaction time depends on typical application factors including load, speed and position.
Electrical response time and profiles are unique to the SAB and AAB. Reaction time requirements should be considered when selecting or interchanging brakes.
All Stearns brake coils are rated for continuous duty and can be energized continually without overheating. The coil heating effect is greatest at coil engagement due to engaging, pull in or inrush amperage.
Temperature limits as established by UL controls standards are:
Class A insulation $\quad 221^{\circ} \mathrm{F}\left(105^{\circ} \mathrm{C}\right)$
Class B insulation $266^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)$ Class H insulation $356^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$.

Types of Applications

In order to simplify the selection of a disc brake, loads can be classified into two categories, non-overhauling and overhauling.
Loads are classified as non overhauling, if (1) no components of the connected equipment or external material undergo a change of height, such as would occur in hoisting, elevating or lowering a load, and (2) there is only rotary motion in a horizontal plane. For example, a loaded conveyor operating in a horizontal plane
would be typical of a non-overhauling load.
If the same conveyor were transporting material to a lower level, it would be classified as an overhauling load. The external material or load undergoes a change in height, with the weight of the load attempting to force the conveyor to run faster than its design speed or to overhaul.
Non-overhauling loads require braking torque only to stop the load and will remain at rest due to system friction. Overhauling loads, such as a crane hoist, have two torque requirements. The first requirement is the braking torque required to stop the load, and the second requirement is the torque required to hold the load at rest. The sum of these requirements is considered when selecting a brake for an overhauling load.

Alignment

Requirements per NEMA:
Permissible ECCENTRICITY of mounting rabbet (AK dimension):
42C to 286TC frames inclusive is $0.004^{\prime \prime}$ total indicator reading. 324TC to 505TC frames inclusive is 0.007 " total indicator reading.

Face Runout:
42C to 286TC frames inclusive is 0.004 " total indicator reading.
If a customer furnishes a face on the machine for brake mounting, the same tolerances apply. Floor mounted brakes must be carefully aligned within 0.005 " for concentricity and angular alignment. Use of dowels to insure permanent alignment is recommended.
In offset brake mount locations such as fan covers, cowls or jack shafting, proper mount rigidity and bearing support must be provided. Spring set frictional brakes characteristically have a rapid stop during torque application which may affect the mount surface or contribute to shaft deflection.
Printed installation information is published and available on all Stearns spring set brakes.

Determining Brake Torque Torque ratings

Brake torque ratings are normally expressed as nominal static torque. That is, the torque required to begin rotation of the brake from a static, engaged condition. This value is to be distinguished from dynamic torque, which is the retarding torque required to stop a linear, rotating or overhauling load.

As a general rule, a brake's dynamic torque is approximately 80% of the static torque rating of the brake for stopping time up to one second. Longer stopping time will produce additional brake heat and possible fading (reduction) of dynamic torque. The required dynamic torque must be converted to a static torque value before selecting a brake, using the relationship:

$$
\mathrm{T}_{\mathrm{s}}=\frac{\mathrm{T}_{\mathrm{d}}}{0.8}
$$

Where, $\mathrm{T}_{\mathrm{s}}=$ Static torque, lb - ft
$T_{d}=$ Dynamic torque, lb-ft
$0.8=$ Constant
(derating factor)
All Stearns brakes are factory burnished and adjusted to produce no less than rated nominal static torque. Burnishing is the initial wear-in and mating of the rotating friction discs with the stationary metallic friction surfaces of the brake.

Although brakes are factory burnished and adjusted, variations in torque may occur if components are mixed when disassembling and reassembling the brake during installation. Further burnishing may be necessary after installation. Friction material will burnish under normal load conditions. Brakes used as holding only duty require friction material burnishing at or before installation to insure adequate torque.
When friction discs are replaced, the brake must be burnished again in order to produce its rated holding torque.

System Friction

The friction and rolling resistance in a power transmission system is usually neglected when selecting a brake. With the use of anti-friction bearings in the system, friction and rolling resistance is usually low enough to neglect. Friction within the system will assist the brake in stopping the load. If it is desired to consider it, subtract the frictional torque from the braking torque necessary to decelerate and stop the load. Friction and rolling resistance are neglected in the examples presented in this guide.

Non-overhauling Loads

There are two methods for determining brake torque for non-overhauling loads. The first method is to size the brake to the torque of the motor. The second is to select a brake on the basis of the total system or load inertia to be stopped.

Selecting Brake Torque from the Motor Data

Motor full-load torque based or nameplate horsepower and speed can be used to select a brake. This is the most common method of selecting a brake torque rating due to its simplicity.

This method is normally used for simple rotary and linear inertial loads. Brake torque is usually expressed as a percent of the full load torque of the motor. Generally this figure is not less than 100% of the motor's full load torque. Often a larger service factor is considered. Refer to Selection of Service Factor.

The required brake torque may be calculated from the formula:

$$
T_{\mathrm{s}}=\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF}
$$

Where, $\mathrm{T}_{\mathrm{s}}=$ Static brake torque, $\mathrm{lb}-\mathrm{ft}$

$$
\begin{aligned}
\mathrm{P} & =\text { Motor horsepower, hp } \\
\mathrm{N} & =\text { Motor full load speed, rpm } \\
\mathrm{SF} & =\text { Service factor } \\
5,252 & =\text { Constant }
\end{aligned}
$$

Match the brake torque to the hp used in the application. When an oversized motor hp has been selected, brake torque based on the motor hp may be excessive for the actual end use.
Nameplate torque represents a nominal static torque. Torque will vary based on combinations of factors including cycle rate, environment, wear, disc burnish and flatness. Spring set brakes provide a rapid stop and hold and are generally not used in repeat positioning applications.

Selection of Service Factor

A service factor is applied to the basic drive torque calculation. The SF compensates for any tolerance variation, data inaccuracy, unplanned transient torque and potential variations of the friction disc.
When using the basic equation: $\mathrm{T}=(\mathrm{hp} \times 5252) / \mathrm{rpm}$ with nonoverhauling loads, a service factor of 1.2 to 1.4 is typical. Overhauling loads with unknown factors such as reductions may use a service factor of 1.4 to 1.8.

Spring set brakes combined with variable frequency drives use service factors ranging from 1.0 to 2.0 (2.0 for holding duty only) depending on the system design. These holding duty brakes must be wired to a separate dedicated power supply.

Occasionally, a brake with a torque rating less than the motor full load torque or with a service factor less than 1.0 is selected. These holding or soft stop applications must be evaluated by the end user or system designer to insure adequate sizing and thermal capacity.
Typically a brake rated 125% of the motor full load torque, or with a 1.25 service factor, provides a stop in approximately the same time as that required for the motor to accelerate the load to full load speed.

Occasionally a motor is oversized or undersized for the load or application. In these situations, the load inertia and desired stopping time calculations should be used rather than relying on the service factor method alone.

Service factor selection can be based on motor performance curves. Motor rotor and load inertia should be considered in this selection process. Depending on the motor design (NEMAA, B, C and D), rpm and horsepower, the maximum torque is either the starting or breakdown torque. A NEMA design B, 3 phase, squirrel cage design motor at breakdown torque produces a minimum of 250% the full load torque. A service factor of 2.5 would be selected. Typical service factors depending on NEMA motor design are: NEMA design A or B: 1.75 to 3.0, NEMA design C: 1.75 to 3.0 and NEMA design D: not less than 2.75.

A brake with an excessive service factor may result in system component damage, an unreasonably rapid stop or loss of load control. A SF above 2.0 is not recommended without evaluation by the end user or system designer.
Example 1: Select brake torque from motor horsepower and speed.

Given: Motor power (P) - 5 hp
Motor speed (N) - 1,750 rpm
Service factor (SF) - 1.4

$$
\begin{aligned}
\mathrm{T} & =\frac{5,252 \times \mathrm{P}}{\mathrm{~N}} \times \mathrm{SF} \\
& =\frac{5,252 \times 5}{1,750} \times 1.4 \\
\mathrm{~T} & =21 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard rating of $25 \mathrm{lb}-\mathrm{ft}$ nominal static torque would be selected.

Example 2 illustrates selection of a brake to provide proper static torque to hold a load if dynamic braking were used to stop the load.

Example 2: Select a brake to hold a load in position after some other method, such as dynamic braking of the motor, has stopped all rotation.
Given: Weight of load (W)-5 lb
Drum radius (R) - 2 ft
Service factor (SF) - 1.4

The static holding torque is determined by the weight of the load applied at the drum radius. A service factor is applied to ensure sufficient holding torque is available in the brake.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{S}} & =\mathrm{F} \times \mathrm{R} \times \mathrm{SF} \\
& =5 \times 2 \times 1.4 \\
\mathrm{~T}_{\mathrm{S}} & =14 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Sizing the Brake to the Inertial Load

For applications where the load data is known, where high inertial loads exist, or where a stop in a specified time or distance is required, the brake should be selected on the basis of the total inertia to be retarded. The total system inertia, reflected to the brake shaft speed, would be:

$$
\begin{aligned}
W \mathrm{k}_{\mathrm{T}}^{2}= & W \mathrm{k}_{\mathrm{B}}^{2}+\mathrm{W} \mathrm{k}_{\mathrm{M}}^{2}+\mathrm{W} \mathrm{k}_{\mathrm{L}}^{2} \\
\mathrm{~W} \text { here: } \mathrm{W} \mathrm{k}_{\mathrm{T}}^{2}= & \text { Total inertia reflected to } \\
& \text { the brake, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~W} \mathrm{k}_{\mathrm{B}}^{2}= & \text { Inertia of brake, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~W} \mathrm{k}_{\mathrm{M}}^{2}= & \text { Inertia of motor rotor, } \mathrm{lb}-\mathrm{ft}^{2} \\
\mathrm{~W} \mathrm{k}_{\mathrm{L}}^{2}= & \text { Equivalent inertia of } \\
& \text { load reflected to brake } \\
& \text { shaft, } \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Other significant system inertias, including speed reducers, shafting, pulleys and drums, should also be considered in determining the total inertia the brake would stop.
If any component in the system has a rotational speed different than the rotational speed of the brake, or any linear moving loads are present, such as a conveyor load, their equivalent inertia in terms of rotary inertia at the brake rotational speed must be determined. The following formulas are applicable:

Rotary motion:

$$
\begin{aligned}
& \text { Equivalent } \mathrm{Wk}_{\mathrm{B}}^{2}=\mathrm{Wk}_{\mathrm{L}}^{2}\left(\frac{\mathrm{~N}_{\mathrm{L}}}{\mathrm{~N}_{\mathrm{B}}}\right)^{2} \\
& \text { Where, } \\
& \text { Equivalent } W K_{B}^{2}=\text { Inertia of rotating } \\
& \text { load reflected to } \\
& \text { brake shaft, lb-ft }{ }^{2} \\
& W k_{L}^{2}=\text { Inertia of rotating } \\
& \text { load, lb-ft }{ }^{2} \\
& N_{L}=\text { Shaft speed } \\
& \text { at load, rpm } \\
& N_{B}=\text { Shaft speed } \\
& \text { at brake, rpm }
\end{aligned}
$$

Horizontal Linear Motion

Equivalent $W k_{W}^{2}=W\left(\frac{V}{2 \pi N_{B}}\right)^{2}$

Where,

Equivalent $\mathrm{Wk}_{\mathrm{W}}^{2}=$	Equivalent inertia of
	linear moving load
	reflected to brake
	shaft, $\mathrm{lb}-\mathrm{ft}^{2}$
$\mathrm{~W}=$	Weight of linear
	moving load, lb
$\mathrm{V}=$	Linear velocity
	of load, ft/min
$\mathrm{N}_{\mathrm{B}}=$	Shaft speed
at brake, rpm	

Once the total system inertia is calculated, the required average dynamic braking torque can be calculated using the formula:

$$
T_{d}=\frac{W k_{T}^{2} \times N_{B}}{308 \times t}
$$

Where, $T_{d}=$ Average dynamic braking torque, lb-ft

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{T}}^{2} & =\begin{array}{l}
\text { Total inertia reflected } \\
\\
\text { to brake, } \mathrm{lb}-\mathrm{ft}^{2}
\end{array} \\
\mathrm{~N}_{\mathrm{B}} & =\text { Shaft speed at } \\
& \text { brake, rpm } \\
\mathrm{t} & =\text { Desired stopping } \\
& \text { time, sec } \\
308 & =\text { Constant }
\end{aligned}
$$

The calculated dynamic torque is converted to the static torque rating using the relationship:

$$
T_{\mathrm{s}}=\frac{\mathrm{T}_{\mathrm{D}}}{0.8}
$$

Where, $\mathrm{T}_{\mathrm{s}}=\begin{aligned} & \text { Brake static } \\ & \text { torque, } \mathrm{lb}-\mathrm{ft}\end{aligned}$

$$
\mathrm{T}_{\mathrm{d}}=\underset{\text { torque, } \mathrm{lb}-\mathrm{ft}}{\text { System dynamic }}
$$

Examples 3, 4, 5 and 6 illustrate how brake torque is determined for nonoverhauling loads where rotary or horizontal linear motion is to be stopped.

Example 3: Select a brake to stop a rotating flywheel in a specified time.

Given, Motor speed $\left(\mathrm{N}_{\mathrm{M}}\right)-1,750 \mathrm{rpm}$
Motor inertia $\left(\mathrm{Wk}_{M}^{2}\right)-0.075 \mathrm{lb}-\mathrm{ft}^{2}$
Flywheel inertia ($\mathrm{Wk}_{\mathrm{FW}}{ }^{2}$) - $4 \mathrm{lb}-\mathrm{ft}^{2}$
Brake inertia $\left(\mathrm{Wk}_{\mathrm{B}}^{2}\right)-0.042 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) -1 sec
First determine the total inertia to be stopped,

$$
\begin{aligned}
W k_{T}^{2} & =W k_{M}^{2}+W k_{F W}^{2}+W k_{B}^{2} \\
& =0.075+4+0.042 \\
W k_{T}^{2} & =4.117{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The dynamic braking torque required to stop the total inertia in 1 second is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{W \mathrm{~K}_{T}^{2} \times \mathrm{N}_{B M}}{308 \times \mathrm{t}} \\
& =\frac{4.117 \times 1,750}{308 \times 1} \\
\mathrm{~T}_{\mathrm{d}} & =23.4 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting T_{d} to static torque

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{23.4}{0.8} \\
\mathrm{~T}_{\mathrm{S}} & =29.3 \mathrm{lb-ft}
\end{aligned}
$$

A brake having a standard static torque rating of $35 \mathrm{lb}-\mathrm{ft}$ would be selected. Since a brake with more torque than necessary to stop the flywheel in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
t= & \frac{W k_{T}^{2} \times N_{B M}}{308 \times T_{d}} \\
= & \frac{W k_{T}^{2} \times N_{B M}}{308 \times\left(0.8 \mathrm{~T}_{\mathrm{S}}\right)} \\
& \frac{4.117 \times 1,750}{308 \times(0.8 \times 35)} \\
t= & 0.84 \mathrm{sec}
\end{aligned}
$$

See section on Stopping Time and Thermal Information.
Example 4: Select a brake to stop a rotating flywheel, driven through a gear reducer, in a specified time.

Given: Motor speed (N_{N}) - $1,800 \mathrm{rpm}$
Motor inertia $\left(W_{W}^{2}\right)-0.075 \mathrm{lb}-\mathrm{ft}^{2}$
Gear reduction (GR) - 20:1
Gear reducer inertia at high
speed shaft $\left(\mathrm{Wk}_{6 \mathrm{R}}^{2}\right)-0.025 \mathrm{lb}-\mathrm{ft}^{2}$
Flywheel inertia $\left(\mathrm{Wk}_{\mathrm{FW}}^{2}\right)-20 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) -
0.25 sec

First, determine rotating speed of flywheel (N_{Fw})
$N_{F W}=\frac{N_{B M}}{G R}$

$$
=\frac{1,800}{20}
$$

$\mathrm{N}_{\mathrm{Fw}}=90 \mathrm{rpm}$

Next, the inertia of the flywheel must be reflected back to the motor brake shaft.

$$
\begin{aligned}
W k_{b}^{2} & =W k_{F W}^{2}\left(\frac{N_{F W}}{N_{M}}\right)^{2} \\
& =20\left(\frac{90}{1,800}\right)^{2}
\end{aligned}
$$

$$
W k_{b}^{2}=0.05{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
$$

Determining the total $W \mathbf{k}^{2}$,

$$
\begin{aligned}
W k_{T}^{2} & =W k_{M}^{2}+W k_{G R}^{2}+W k_{b}^{2} \\
& =0.075+0.025+0.05 \\
W k_{T}^{2} & =0.15{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The required dynamic torque to stop the flywheel in 0.25 seconds can now be determined.

$$
\begin{aligned}
& T_{d}=\frac{W k_{T}^{2} \times N_{B M}}{308 \times t} \\
& T_{d}=\frac{0.15 \times 1,800}{308 \times 0.25} \\
& T_{d}=3.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting dynamic torque to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{3.5}{0.8}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{s}}=4.4 \mathrm{lb}-\mathrm{ft}$
A brake having a standard static torque rating of 6 lb -ft would be selected. Since a brake with more torque than necessary to stop the flywheel in 0.25 seconds is selected, the stopping time would be,
$t=\frac{W k_{T}^{2} \times N_{M}}{308 \times T_{d}}$
$=\frac{W \mathrm{Kk}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{M}}}{308 \times\left(0.8 \times \mathrm{T}_{\mathrm{s}}\right)}$
$=\frac{0.15 \times 1,800}{308 \times(0.8 \times 6)}$
$\mathrm{t}=0.18 \mathrm{sec}$
See section on Stopping Time and Thermal Information.
Example 5: Select a brake to stop a load on a horizontal belt conveyor in a specified time.

Given:

Conveyor pulley speed (N_{p}) - 32 rpm
Weight of load (W) - 30 lb
Conveyor pulley and belt inertia
($\mathrm{W} \mathrm{K}_{\mathrm{p}}^{2}$) - $4.0 \mathrm{lb}-\mathrm{ft}^{2}$
Conveyor pulley diameter $\left(\mathrm{d}_{\mathrm{p}}\right)-1 \mathrm{ft}$
Required stopping time (t) -0.25 sec

First, convert the rotational pulley speed to linear belt speed $\left(V_{B}\right)$.
$V_{B}=\pi d_{p} N_{p}$

$$
\begin{aligned}
& =\pi \times 1 \times 32 \\
\mathrm{~V}_{\mathrm{B}} & =100.5 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Next, determine inertia of load.

$$
\begin{aligned}
\begin{aligned}
W k_{W}^{2} & =W\left(\frac{V_{B}}{2 \pi \times N_{p}}\right)^{2} \\
& =30\left(\frac{100.5}{2 \pi \times 32}\right)^{2} \\
W_{W}^{2} & =7.5 \mathrm{ft}-\mathrm{lb}^{2}
\end{aligned}
\end{aligned}
$$

Then, determine total inertial load

$$
\begin{aligned}
W_{k_{T}^{2}} & =W k_{W}^{2}+W k_{P}^{2} \\
& =7.5+4.0 \\
W k_{T}^{2} & =11.5{\mathrm{lb}-\mathrm{ft}^{2}}^{\text {an }}
\end{aligned}
$$

The required dynamic torque to stop the conveyor load in 0.25 seconds can now be determined.
$\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{W} \mathrm{K}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{p}}}{308 \times \mathrm{t}}$
$T_{d}=\frac{11.5 \times 32}{308 \times 0.25}$
$\mathrm{T}_{\mathrm{d}}=4.8 \mathrm{lb-ft}$
Converting dynamic torque to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{S}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{4.8}{0.8} \\
\mathrm{~T}_{\mathrm{S}} & =6 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A brake having a standard static torque rating of $6 \mathrm{lb}-\mathrm{ft}$ would be selected. See Thermal Information.
Example 6: Select a brake to stop a trolley crane and its load in a specified time. Brake mounted on wheel axle.

Given:

Weight of crane $\left(W_{c}\right)-2,000 \mathrm{lb}$
Weight of load $\left(W_{L}\right)-100 \mathrm{lb}$
Trolley velocity (V) - $3 \mathrm{ft} / \mathrm{sec}$ or $180 \mathrm{ft} / \mathrm{min}$
Radius of trolley wheel (r) -0.75 ft
Required stopping time (t) - 2 sec

The dynamic braking torque required to stop the trolley crane and load can be determined by one of two methods. The first method is to determine the equivalent inertia of the linearly moving crane and load, then calculate the dynamic braking torque. The second method is to determine the dynamic braking torque directly.
Using the first method, the total weight to be stopped is determined first.

$$
\begin{aligned}
W_{T} & =W_{L}+W_{C} \\
& =100+2,000 \\
W_{T} & =2,100 \mathrm{lb}
\end{aligned}
$$

Next, the rotational speed of the axle $\left(\mathrm{N}_{\mathrm{B}}\right)$ is calculated.

$$
\begin{aligned}
N_{B} & =\frac{V}{2 \pi r} \\
& =\frac{180}{2 \times \pi \times 0.75} \\
N_{B} & =38.2 \mathrm{rpm}
\end{aligned}
$$

Then, the equivalent inertia of the linearly moving crane and load is determined.

$$
\begin{aligned}
W K_{T}^{2} & =W_{T}\left(\frac{V}{2 \pi N_{B}}\right)^{2} \\
& =2,100\left(\frac{180}{2 \pi 38.2}\right)^{2}
\end{aligned}
$$

$\mathrm{Wk}_{\mathrm{T}}^{2}=1,181 \mathrm{lb}-\mathrm{ft}^{2}$
Finally, the dynamic braking torque required to stop the total inertia in 2 seconds is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{\mathrm{W} \mathrm{k}_{\mathrm{T}} \times \mathrm{N}_{\mathrm{B}}}{308 \times \mathrm{t}} \\
& =\frac{1,181 \times 38.2}{308 \times 2} \\
\mathrm{~T}_{\mathrm{d}} & =73 \mathrm{lb-ft}
\end{aligned}
$$

Using the second method, the dynamic braking torque required to stop the crane and load in 2 seconds can be calculated directly using the formula,

$$
\left.\begin{array}{rl}
\mathrm{T}_{\mathrm{d}}= & \frac{\mathrm{W}_{\mathrm{T}}^{\mathrm{v}}}{\mathrm{gt}} \times \mathrm{r} \\
\text { Where, } \mathrm{T}_{\mathrm{d}}= & \text { Average dynamic } \\
& \text { braking torque, lb-ft } \\
\mathrm{W}_{\mathrm{t}}= & \text { Total weight of linear } \\
& \text { moving load, Ib } \\
\mathrm{v}= & \text { Linear velocity of load, } \\
& \mathrm{ft} / \mathrm{sec} \\
\mathrm{~g}= & \text { Gravitational acceleration } \\
& \text { constant, } 32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}\right\} \begin{aligned}
\mathrm{t}= & \text { Desired stopping time, } \\
& \text { sec } \\
\mathrm{r}= & \text { Length of the moment } \\
& \text { arm (wheel radius), } \mathrm{ft}
\end{aligned}
$$

or, for this example,

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\frac{2,100 \times 3}{32.2 \times 2} \times .75 \\
& \mathrm{~T}_{\mathrm{d}}=73 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

For both methods above, the required dynamic braking torque is converted to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{d}}}{0.8} \\
& =\frac{73}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =91 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

A smaller brake could be mounted on the high speed shaft in place of the higher torque on the low speed shaft.

A brake having a standard static torque rating of $105 \mathrm{lb}-\mathrm{ft}$ is selected. Since a brake with more torque than necessary to stop the load in 2 seconds is selected, the stopping time would be,

$$
\begin{aligned}
T & =\frac{W_{T}^{v}}{g T_{d}} \times r \\
& =\frac{W_{T} v}{g \times\left(0.8 \times T_{s}\right)} \times r \\
& =\frac{2,100 \times 3}{32.2 \times(0.8 \times 105)} \times 0.75 \\
t & =1.8 \mathrm{sec}
\end{aligned}
$$

See section on Stopping Time and cycle rates, Thermal Selection. Stops should be under 2 seconds. Longer stops require application test.

Overhauling Loads

Applications with a descending load, such as power lowered crane, hoist or elevator loads, require a brake with sufficient torque to both stop the load, and hold it at rest. Overhauling loads having been brought to rest still invite motion of the load due to the effect of gravity. Therefore, brake torque must be larger than the overhauling torque in order to stop and hold the load. If brake torque is equal to or less than the overhauling torque, there is no net torque available for stopping a descending load.

First, the total system inertia reflected to the brake shaft speed must be calculated.

Second, the average dynamic torque required to decelerate the descending load in the required time is calculated with the formula:

$$
T_{d}=\frac{W k_{T}^{2} \times N_{B}}{308 \times t}
$$

Where, $T_{d}=$ Average dynamic braking torque, lb-ft

$$
\left.\begin{array}{rl}
W \mathrm{~K}_{\mathrm{T}}^{2}= & \text { Total inertia reflected } \\
& \text { to brake, } \mathrm{lb}-\mathrm{ft}^{2}
\end{array}\right\} \begin{aligned}
\mathrm{N}_{\mathrm{B}}= & \text { Shaft speed at brake, rpm. } \\
& \text { Consider motor slip when } \\
& \text { descending. } \\
\mathrm{t}= & \text { Desired stopping time, } \\
& \mathrm{sec}
\end{aligned}
$$

Third, the overhauling torque reflected to the brake shaft is determined by the formula:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{o}}= & \mathrm{W} \times \mathrm{R} \times \frac{\mathrm{N}_{\mathrm{L}}}{\mathrm{~N}_{\mathrm{B}}} \\
\text { Where, } \mathrm{T}_{\mathrm{o}}= & \text { Overhauling dynamic } \\
& \begin{array}{l}
\text { torque of load reflected to } \\
\\
\text { brake shaft, } \mathrm{lb}-\mathrm{ft}
\end{array} \\
\mathrm{~W}= & \begin{array}{l}
\text { Weight of overhauling } \\
\\
\text { load, } \mathrm{lb}
\end{array} \\
\mathrm{R}= & \begin{array}{l}
\text { Radius of hoist or } \\
\text { elevator drum, ft }
\end{array} \\
\mathrm{N}_{\mathrm{L}}= & \underset{\substack{\text { Rotating speed of drum }, \mathrm{rpm}}}{\mathrm{~N}_{\mathrm{B}}=} \begin{array}{l}
\text { Rotating speed at brake, } \\
\mathrm{rpm}
\end{array}
\end{aligned}
$$

Or alternately, the dynamic torque to overcome the overhauling load can be calculated with the formula:

$$
T_{0}=\frac{0.158 \times W \times V}{N_{B}}
$$

Where, $\mathrm{T}_{0}=$ Overhauling dynamic torque of load reflected to brake shaft, lb-ft

$$
\begin{aligned}
\mathrm{W}= & \text { Weight of overhauling } \\
& \text { load, } \mathrm{Ib} \\
\mathrm{~V}= & \text { Linear velocity of } \\
& \text { descending load, } \mathrm{ft} / \mathrm{min} \\
\mathrm{~N}_{\mathrm{B}} & =\text { Shaft speed at brake, rpm } \\
0.158 & =\text { Constant }
\end{aligned}
$$

Next, the total dynamic torque required to stop and hold the overhauling load is the sum of the two calculated dynamic torques:

$$
T_{t}=T_{d}+T_{0}
$$

Finally, the dynamic torque must be converted to static brake torque to select a brake:

$$
T_{s}=\frac{T_{d}}{0.8}
$$

Where, $\mathrm{T}_{\mathrm{s}}=$ Brake static torque, lb-ft

$$
T_{t}=\text { System dynamic }
$$

torque, lb-ft

If the total inertia of the system and overhauling load cannot be accurately determined, a brake rated at 180\% the motor full load torque should be selected. Refer to Selection of Service Factor. The motor starting torque may permit a heavier than rated load to be lifted; the brake must stop the load when descending.
Examples 7, 8 and 9 illustrate how brake torque would be determined for overhauling loads. In these examples brakes are selected using the system data rather than sizing them to the motor. Refer to the section on Thermal Calculations to determine cycle rate.

Consider motor slip in calculation. An 1800 rpm motor with 10% slip would operate at $1,620 \mathrm{rpm}$ when the load is ascending and $1,980 \mathrm{rpm}$ when descending. Motor rpm, armature inertia and load position will affect stop time. Brakes on overhauling loads should be wired through a dedicated relay.
Example 7: Select a brake to stop an overhauling load in a specified time.

Given: Cable speed (V)-667 ft/min
Weight of load (W) - 100 lb
Drum diameter (D) - 0.25 ft
Drum inertia (Wk ${ }_{\mathrm{D}}^{2}$) - $5 \mathrm{lb}-\mathrm{ft}^{2}$
Required stopping time (t) -1 sec
First, determine brakemotor shaft speed (N_{B}).

$$
\begin{aligned}
N B & =\frac{V}{\pi D} \\
& =\frac{667}{\pi \times 0.25}
\end{aligned}
$$

$$
\mathrm{NB}=849 \mathrm{rpm}
$$

Then, determine the equivalent inertia of the overhauling load.

$$
\begin{aligned}
W k_{\mathrm{I}}^{2} & =\mathrm{W}\left(\frac{\mathrm{~V}}{2 \pi \mathrm{~N}_{\mathrm{B}}}\right)^{2} \\
& =100\left(\frac{667}{2 \pi \times 849}\right)^{2} \\
\mathrm{Wk}_{\mathrm{I}}^{2} & =1.56 \mathrm{lb-ft}^{2}
\end{aligned}
$$

Therefore, the total inertia at the brake is,

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{T}}^{2} & =\mathrm{W} \mathrm{k}_{\mathrm{D}}^{2}+\mathrm{Wk}_{\mathrm{I}}^{2} \\
& =5+1.56 \\
\mathrm{Wk}_{\mathrm{T}}^{2} & =6.56 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Now, the dynamic torque required to decelerate the load and drum in the required time is calculated.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =W \mathrm{~K}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{B}} \\
& =\frac{6.56 \times 850}{308 \times 1} \\
\mathrm{~T}_{\mathrm{d}} & =18.1 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Next, calculate the dynamic torque required to overcome the overhauling load.

$$
\begin{aligned}
\mathrm{T}_{0} & =\mathrm{W} \times \mathrm{R} \\
& =100 \times \frac{0.25}{2} \\
\mathrm{~T}_{0} & =12.5 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{o}} \\
& =18.1+12.5 \\
\mathrm{~T}_{\mathrm{t}} & =30.6 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Dynamic torque is then converted to static torque.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{t}}}{0.8} \\
& =\frac{30.6}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =38.3 \mathrm{lb-ft}
\end{aligned}
$$

A brake having a standard torque rating of $50 \mathrm{lb}-\mathrm{ft}$ is selected based on expected stop time. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
\mathrm{t} & =\frac{W K_{T}^{2} \times N}{308 \times T_{\mathrm{d}}} \\
\text { where, } \quad T_{\mathrm{s}} & =\frac{T_{\mathrm{t}}}{0.8} \\
& =\frac{T_{\mathrm{d}}+T_{0}}{0.8} \\
\text { or, } \quad T_{d} & =0.8 T_{\mathrm{s}}-\mathrm{T}_{0} \\
& =(0.8)(50)-12.5 \\
\mathrm{~T}_{\mathrm{d}} & =27.5 \mathrm{lb}-\mathrm{ft} \\
\text { therefore, } \quad \mathrm{t} & =\frac{6.56 \times 850}{308 \times 27.5} \\
\mathrm{t} & =0.7 \mathrm{sec}
\end{aligned}
$$

Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. See section on Stopping time.
Example 8: Select a brake to stop an overhauling load driven through gear reducer in a specified time.

Given: Motor speed $\left(\mathrm{N}_{\mathrm{M}}\right)-1,150 \mathrm{rpm}$
Motor inertia (WK ${ }_{(0)}^{2}$) - $0.65 \mathrm{lb}-\mathrm{ft}^{2}$
Gear reduction (GR) - 300:1
Drum diameter (D) -1.58 ft
Weight of load (W) - 4,940 lb
Drum inertia (WK ${ }^{2}$) - $600 \mathrm{lb-ft}{ }^{2}$
Required stopping time (t) - 0.5 sec

First, calculate all inertial loads reflected to the brakemotor shaft.

The rotational speed of the drum is,

$$
\begin{aligned}
\mathrm{N}_{\mathrm{D}} & =\frac{\mathrm{N}_{\mathrm{M}}}{\mathrm{GR}} \\
& =\frac{1,150}{300} \\
\mathrm{~N}_{\mathrm{D}} & =3.83 \mathrm{rpm}
\end{aligned}
$$

From this, the cable speed can be determined.

$$
\begin{aligned}
V & =N_{D} \times \pi D \\
& =3.83 \times \pi \times 1.58 \\
V & =19.0 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

The equivalent inertia of the load reflected to the brakemotor shaft is,

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{I}}^{2} & =\mathrm{W}\left(\frac{\mathrm{~V}}{2 \pi \mathrm{~N}_{\mathrm{BM}}}\right)^{2} \\
& =4,940\left(\frac{19.0}{2 \pi 1,150}\right)^{2} \\
\mathrm{Wk}_{\mathrm{I}}^{2} & =0.034{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The equivalent inertia of the drum at the brakemotor shaft speed is,

$$
\begin{aligned}
W k_{d}^{2} & =W k_{0}^{2}\left(\frac{N_{\mathrm{D}}}{N_{\text {BM }}}\right)^{2} \\
& =600\left(\frac{3.83}{1,150}\right)^{2}
\end{aligned}
$$

Finally, the total inertia the brake will retard is,

$$
\begin{aligned}
& \mathrm{Wk}_{T}^{2}=\mathrm{Wk}_{\mathrm{M}}^{2}+\mathrm{Wk}_{\mathrm{I}}^{2}+\mathrm{Wk}_{\mathrm{d}}^{2} \\
& \mathrm{Wk} \mathrm{k}_{\mathrm{T}}^{d}=0067 \mathrm{lb}-\mathrm{ft}^{2} \\
& \mathrm{Wk}_{\mathrm{T}}^{2}=0.691{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

The dynamic torque required to decelerate the total inertia is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{W k_{1}^{2} \times N_{B M}}{308 \times t} \\
& =\frac{0.691 \times 1,150}{308 \times 0.5} \\
\mathrm{~T}_{\mathrm{d}} & =5.16{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

Now, calculate the dynamic torque to overcome the overhauling load.

$$
\begin{aligned}
T_{0} & =W \times R=W \times 1 / 2 D \\
& =4,940 \times \frac{1.58}{2}
\end{aligned}
$$

$$
\mathrm{T}_{0}=3,903 \mathrm{lb}-\mathrm{ft}
$$

Which reflected to the brakemotor shaft becomes,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{GR}} \\
& =\frac{3,903}{300} \\
\mathrm{~T}_{\mathrm{m}} & =13.0 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Then, the total dynamic torque to stop and hold the overhauling load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
T_{t} & =T_{d}+T_{m} \\
& =5.16+13.0 \\
T_{t} & =18.16 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Dynamic torque is then converted to static torque.

$$
\begin{aligned}
T_{S} & =\frac{T_{t}}{0.8} \\
& =\frac{18.16}{0.8}
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{s}}=22.7 \mathrm{lb-ft}
$$

A brake having a standard torque rating of $25 \mathrm{lb}-\mathrm{ft}$ is selected.
Example 9: Select a brake to stop and hold a load on an inclined plane (skip hoist).

Given: Motor data
Power (P) - $71 / 2 \mathrm{hp}$
Speed (N_{M}) - 1,165 rpm
Rotor inertia (WK ${ }_{5}^{2}$) $-1.4 \mathrm{lb}-\mathrm{ft}^{2}$

Gear reducer data:

Reduction (G_{R}) - 110:1
Inertia at input shaft
($W \mathrm{~K}^{2}$) - $0.2 \mathrm{lb-ft}^{2}$
Drum data
Diameter (D_{D}) - 1.5 ft
Inertia (Wk ${ }^{2}$) - 75 lb - tt^{2}

Pulley data

Diameter (D_{P}) - 1.5 ft
Inertia ($\mathrm{Wk}_{\mathrm{p}}^{2}$) - 20 lb - ft^{2}
Bucket weight $\left(W_{B}\right)-700 \mathrm{lb}$
Maximum weight of load (WL) - 4,000 lb
Slope of track (B) -52.7°

Required stopping time (t) -1 sec
The bucket is full when ascending the track and is empty when descending. When selecting a brake the most severe condition would be a fully loaded bucket backed down the hoist track. In normal operation the descending bucket would be empty. In this example, the brake is selected for the most severe condition.
The total torque to stop and hold the bucket and load when descending is the sum of (a) the torque to decelerate the total inertia and (b) the torque required to hold the loaded bucket.

First, calculate all inertial loads reflected to the brakemotor shaft. The rotational speed of the drum is:

$$
\begin{aligned}
N_{D} & =\frac{N_{M}}{G R} \\
& =\frac{1,165}{110} \\
N_{D} & =10.6 \mathrm{rpm}
\end{aligned}
$$

From this the cable speed can be determined

$$
\begin{aligned}
V & =N_{D} \times \pi D_{D} \\
& =10.6 \times \pi \times 1.5 \\
V & =50 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

The equivalent inertia of the loaded bucket reflected to the brakemotor shaft is,

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{I}}^{2} & =\mathrm{W}\left(\frac{\mathrm{~V}}{2 \pi \mathrm{~N}_{\mathrm{M}}}\right)^{2} \\
& =4,700\left(\frac{50}{2 \pi \times 1,165}\right)^{2} \\
\mathrm{Wk}_{\mathrm{I}}^{2} & =0.219{\mathrm{lb}-\mathrm{ft}^{2}}^{2}
\end{aligned}
$$

Next, the inertia of the pulley and drum are reflected to the brake motor shaft speed so the total inertia at the brake can be determined.
Since the diameters of the pulley and drum are the same, 1.5 ft , their rotational speeds would be the same, 10.6 rpm .
The inertia of the pulley reflected to the brakemotor shaft is,

$\mathrm{W} \mathrm{k}_{\mathrm{p}}^{2}=0.0017 \mathrm{lb}-\mathrm{ft}^{2}$
The inertia of the drum reflected to the brakemotor shaft is,

The total inertia to be stopped is,

$$
\begin{aligned}
W k_{T}^{2} & =W k_{\mathrm{I}}^{2}+W k_{\mathrm{P}}^{2}+W k_{\mathrm{d}}^{2}+W k_{R}^{2}+W k_{M}^{2} \\
& =0.219+0.0017+0.0062+0.2+1.4 \\
W k_{T}^{2} & =1.827 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Then, the dynamic torque required to bring the descending bucket and load to rest is,

$$
\begin{aligned}
& T_{d}=\frac{W k_{T}^{2} \times N_{M}}{308 \times T_{d}} \\
& T_{d}=\frac{1.827 \times 1,165}{308 \times 1}
\end{aligned}
$$

The additional dynamic torque required to hold the overhauling load would be determined by the unbalanced component of the force acting along the plane of the hoist track, $\mathrm{W}_{\mathrm{T}} \sin B$, and the length of the moment arm which is the drum radius $\left(R_{D}\right) . W_{T} \sin B$ is the force necessary to retard downward motion of the loaded hoist bucket.

$$
\begin{aligned}
T_{0} & =W_{T} \sin B \times R_{D} \\
& =W_{T} \sin B \times 1 / 2 D_{D} \\
& =4,700 \times \sin 52.7^{\circ} \times 1 / 2(1.5) \\
& =4,700 \times 0.7955 \times 0.75 \\
T_{0} & =2,804 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Which reflected to the brakemotor shaft becomes,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{GR}} \\
& =\frac{2,804}{110} \\
\mathrm{~T}_{\mathrm{m}} & =25.5 \mathrm{lb-ft}
\end{aligned}
$$

Then, the total dynamic torque to stop and hold the descending bucket and load is the sum of the two calculated dynamic torques.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{m}} \\
& =6.9+25.5 \\
\mathrm{~T}_{\mathrm{t}} & =32.4 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Converting to static torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\frac{\mathrm{T}_{\mathrm{t}}}{0.8} \\
& =\frac{32.4}{0.8} \\
\mathrm{~T}_{\mathrm{s}} & =40.5 \mathrm{lb-ft}
\end{aligned}
$$

A brake having a standard torque rating of $50 \mathrm{lb}-\mathrm{ft}$ is selected. Since a brake with more torque than necessary to stop the load in 1 second is selected, the stopping time would be,

$$
\begin{aligned}
& t=\frac{W_{T} \times N_{M}}{308 \times T_{d}} \\
& \text { Where, } T_{s}=\frac{T_{1}}{0.8} \\
&=\frac{T_{d}+T_{m}}{0.8} \\
& \text { or, } T_{d}=0.8 T_{\mathrm{s}}-T_{\mathrm{m}} \\
&=(0.8)(50)-25.5 \\
& T_{d}=14.5 \mathrm{lb}-\mathrm{ft} \\
& \text { therefore, } \\
& t=\frac{1.827 \times 1,165}{308 \times 14.5} \\
& t=0.48 \mathrm{sec}
\end{aligned}
$$

See section on Stopping time.

Stopping Time and Deceleration Rate

In the formulas used to determine dynamic torque, stopping time or " t " in seconds is a desired or assumed value selected on the requirements of the application. For optimum brake performance, a stopping or braking time of 1 second or less is desirable. Stop times between 2 and 3 seconds require test. A brake of insufficient torque rating will lengthen the stopping time. This may result in overheating of the brake to a point where torque falls appreciably. The friction material could carbonize, glaze, or fail.
After determining the braking torque required by a system, it may be necessary to recalculate the stopping time based on the actual brake size selected to insure that stopping time falls within the 0 to 2 second range. Any formula, where the stopping time is a variable, may be rewritten to solve for the new stopping time. For instance, the dynamic torque equation may be transposed as follows:

$$
\begin{aligned}
T_{d} & =\frac{W k_{T}^{2} \times N_{B}}{308 \times t} \\
\text { or, } \quad t & =\frac{W k_{T}^{2} \times N_{B}}{308 \times\left(0.8 \times T_{S}\right)}
\end{aligned}
$$

Where, $t=$ Stopping time, sec

$$
\begin{aligned}
\mathrm{Wk}_{\mathrm{T}}^{2}= & \text { Total inertia reflected } \\
& \text { to brake, lb-ft } \\
\mathrm{N}_{\mathrm{B}}= & \text { Shaft speed at brake, rpm } \\
\mathrm{T}_{\mathrm{S}}= & \text { Nominal static torque } \\
& \text { rating of brake, } \mathrm{lb}-\mathrm{ft} \\
\mathrm{~T}_{\mathrm{C}}= & \text { Dynamic braking torque } \\
& \left(0.8 \times \mathrm{T}_{\mathrm{S}}\right), \mathrm{lb}-\mathrm{ft} \\
0.8= & \text { Constant (derating factor) } \\
308= & \text { Constant }
\end{aligned}
$$

Brakes are rated in static torque. This value is converted to dynamic torque, as done in the above equation, when stopping time is calculated. That is,

$$
\mathrm{T}_{\mathrm{d}}=0.8 \times \mathrm{T}_{\mathrm{s}}
$$

Where, $T_{d}=$ Dynamic braking torque , lb-ft
$\mathrm{T}_{\mathrm{S}}=$ Nominal static torque rating of brake, lb-ft

The approximate number of revolutions the brake shaft makes when stopping is:
Revolutions to stop $=\frac{t \times N_{B}}{120}$
Where, $t=$ Stopping time, sec

$$
\begin{aligned}
N_{\mathrm{B}} & =\text { Shaft speed at brake, rpm } \\
120 & =\text { Constant }
\end{aligned}
$$

The average rate of deceleration when braking a linearly moving load to rest can be calculated using the stopping time determined by the above formula and the initial linear velocity of the load.

$$
a=-\frac{V_{i}}{t}
$$

Where, $\mathrm{a}=$ Deceleration, $\mathrm{ft} / \mathrm{sec}^{2}$

$$
\begin{aligned}
V_{i} & =\text { Initial linear velocity of } \\
& \text { load, ft/sec } \\
t & =\text { Stopping time, sec }
\end{aligned}
$$

RPM Considerations

The maximum allowable rotational speed of the brake should not be exceeded in braking. Maximum brake rpm as listed in the catalog is intended to limit stopping time to 2 seconds or less and insure friction disc stability. Brakes are not dynamically balanced because of the low brake inertia.

Determining Required Thermal Capacity

Thermal Ratings

When a brake stops a load, it converts mechanical energy to thermal energy or heat. The heat is absorbed by components of the brake. This heat is then dissipated by the brake. The ability of a given brake to absorb and dissipate heat without exceeding temperature limitations is known as thermal capacity.
There are two categories of thermal capacity for a brake. The first is the maximum energy the brake can absorb in one stop, generally referred to as a "crash" or "emergency" stop. The second is the heat dissipation capability of the brake when it is cycled frequently. To achieve optimum brake performance, the thermal rating should not be exceeded. They are specified for a predetermined maximum temperature rise of the brake friction material.
The ability of a brake to absorb and dissipate heat is determined by many factors, including the design of the brake, the ambient temperature, brake enclosure, position of the brake, the surface that the brake is mounted to, and the altitude.

The rating for a given brake is the maximum allowable. Longer brake life results when the brake has more thermal capacity than a power transmission requires. Much shorter life or brake failure will result when the thermal capacity rating is exceeded. Ratings are determined at an ambient temperature of $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$, with the brake in a horizontal position, with a stopping time of 1 second or less, and with no external heat source such as a motor.

Ambient temperature will limit the thermal capacity of a brake. Temperatures above $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ require derating of the thermal capacity rating. For example, at $150^{\circ} \mathrm{F}$, thermal capacity is reduced approximately 30\% (see Derating Thermal Capacity Chart).

CHART: Derating Thermal Capacity

A temperature range of $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ is acceptable in most brake applications. Above $104^{\circ} \mathrm{F}$ also consider Class H coil insulation.
Thermal capacity ratings are determined with enclosures on the brake. Other customer furnished covers or cowls may affect a brake's thermal capacity. The effect on thermal capacity should be evaluated. In some cases, thermal capacity may be increased by use of air or liquid cooling. However, provisions must be made to prevent contaminating the brake internally.
Brakes with brass stationary discs are derated 25%.

The mounting position of a brake will also affect thermal capacity. The specified ratings are for brakes mounted in a horizontal position with the solenoid plunger above the solenoid. For brakes mounted in a vertical position, or 15° or more from horizontal, the thermal capacity decreases due to friction disc drag. Brakes are modified for vertical operation to minimize the drag. 2 - and 3 - disc brakes are derated 25%, 4 -disc brakes are derated 33%. 4 - and 5 -disc brakes are not recommended for vertical use.

Thermal capacity ratings are established without external sources of heat increasing the brake temperature. The surface that a brake is mounted to, such as an electric
motor or gear reducer, will limit the heat dissipation capability or thermal capacity of a brake. These sources of heat should be evaluated when determining the thermal requirements of the system for which the brake is selected.

High altitudes may also affect a brake's thermal capacity. Stearns brakes will operate to $10,000 \mathrm{ft}$ above sea level at $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ ambient temperature. At $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature, altitude and temperature adjustments occur. Refer to NEMA MG1-1993 Section 14 for additional information.
CHART: Altitude \& Thermal Capacity

Maximum Energy Absorption

The thermal capacity of a brake is limited by the maximum energy it can absorb in one stop. This factor is important when stopping extremely high inertial loads at infrequent intervals. Such use of a brake requires extensive cooling time before it can be operated again.

The energy a brake is required to absorb in one stop by a given power transmission system is determined by the formulas below. The calculated energy of the system should not exceed the maximum kinetic energy rating of the brake. System energy exceeding the brake's maximum rating may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.
In the case of linear loads, the energy that the brake must absorb is kinetic energy. It is determined by the formula:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{I}} & =\frac{\mathrm{W}_{\mathrm{v}^{2}}^{2}}{2 \mathrm{~g}} \\
\mathrm{KE}_{\mathrm{I}} & =\begin{array}{l}
\text { Kinetic energy of linear } \\
\\
\\
\text { moving load, } \mathrm{lb}-\mathrm{ft}
\end{array} \\
\mathrm{~W} & =\text { Weight of load, lb } \\
\mathrm{v} & =\text { Linear velocity of load, ft/sec } \\
\mathrm{g} & =\begin{array}{l}
\text { Gravitational acceleration } \\
\text { constant, } 32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{array}
\end{aligned}
$$

In the case of rotational loads, the energy that the brake must absorb is also kinetic energy. It is determined by the formula:

$$
\begin{aligned}
& \mathrm{KE}_{\mathrm{r}}=\frac{W \mathrm{~W}_{\mathrm{r}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2}}{5875} \\
& \text { Where, } \mathrm{KE}_{\mathrm{r}}= \\
& \text { Kinetic energy of linear } \\
& \text { load, } \mathrm{lb}-\mathrm{ft} \\
& \mathrm{~W} \mathrm{~K}_{\mathrm{T}}^{2}= \\
& \text { Inertia of the rotating load } \\
& \text { reflected to brake shaft, } \mathrm{lb}-\mathrm{tt}^{2} \\
& \mathrm{~N}_{\mathrm{B}}= \\
& \text { Shaft speed at brake, } \mathrm{rpm} \\
& 5875= \text { Constant }
\end{aligned}
$$

In the case of overhauling loads, both the kinetic energy of the linear and rotating loads and the potential energy transformed into kinetic energy by the change in height or position must be considered when determining the total energy that the brake must absorb. The potential energy transformed to kinetic energy is determined by the formula:

Thus, the total energy to be absorbed by a brake stoping an overhauling load is:

$$
E_{T}=K E_{I}+K E_{r}+P E
$$

Example 10 illustrates how energy absorption for Example 8 would be determined for one stop.

Example 10: Determine the total energy absorbed by a brake in one stop.

In Example 8, the calculation for total energy to be absorbed would be as follows.
First, calculate the kinetic energy of the linear load. The load weight was $4,940 \mathrm{lb}$ and the velocity is $19 \mathrm{ft} / \mathrm{min}$ or 0.317
$\mathrm{ft} / \mathrm{sec}$. The kinetic energy is:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{I}} & =\frac{\mathrm{W}_{\mathrm{v}}{ }^{2}}{2 g} \\
& =\frac{4,940 \times 0.317^{2}}{2 \times 32.2} \\
\mathrm{KE}_{\mathrm{I}} & =7.71 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

Next, calculate the kinetic energy for the rotational load. The motor inertia is 0.65 $\mathrm{lb}-\mathrm{ft}^{2}$ and the drum inertia reflected to the brake shaft speed is $0.0067 \mathrm{lb}-\mathrm{ft}^{2}$. The total rotational inertia at the brakemotor shaft is,

$$
\begin{aligned}
W k_{\mathrm{f}}^{2} & =W k_{\mathrm{M}}^{2}+W k_{\mathrm{f}}^{2} \\
& =0.65+0.0067 \\
W k_{\mathrm{f}}^{2} & =0.6567 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

And the kinetic energy of the rotating components is,

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{r}} & =\frac{\mathrm{W} \mathrm{~K}_{\mathrm{I}}^{2} \times \mathrm{N}_{\mathrm{B}}}{5,875} \\
& =\frac{0.6567 \times 1,150^{2}}{5,875} \\
\mathrm{KE}_{\mathrm{I}} & =147.8 \mathrm{ft-lb}
\end{aligned}
$$

Now, calculate the potential energy converted to kinetic energy due to the change in position of the load while descending. A descending load is the most severe case since potential energy is transformed to kinetic energy that the brake must absorb. A $25 \mathrm{lb}-\mathrm{ft}$ brake was selected in Example 8. The 25 lb -ft static torque rating is converted to dymanic torque,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\mathrm{T}_{\mathrm{S}} \times 0.8 \\
& =25 \times 0.8 \\
\mathrm{~T}_{\mathrm{t}} & =20 \mathrm{lb} \mathrm{ft}
\end{aligned}
$$

Of this torque, $13.0 \mathrm{lb}-\mathrm{ft}$ is required to overcome the overhauling load as determined in Example 8. The dynamic torque available to decelerate the load is,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\mathrm{T}_{\mathrm{t}}-\mathrm{T}_{\mathrm{m}} \\
& =20-13 \\
\mathrm{~T}_{\mathrm{d}} & =7 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The stopping time resulting from this dynamic torque is,

$$
\begin{aligned}
t & =\frac{W k_{T}^{2} \times N_{M}}{308 \times T_{d}} \\
& =\frac{0.691 \times 1,150}{308 \times 7} \\
t & =0.369 \mathrm{sec}
\end{aligned}
$$

Where, $\mathrm{Wk}^{2}=0.690 \mathrm{lb-ft}^{2}$ is the total inertia the brake is to retard as determined in Example 8. With the load traveling at $19.0 \mathrm{ft} / \mathrm{min}$ or $0.317 \mathrm{ft} / \mathrm{sec}$, the distance it will travel is,

$$
\begin{aligned}
s & =1 / 2 \mathrm{vt} \\
& =1 / 2 \times 0.317 \times 0.369 \\
\mathrm{~s} & =0.059 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Wire the brake through a dedicated relay on overhauling loads where stop time or distance is critical. The potential energy transformed to kinetic energy in this distance would be,

$$
\begin{aligned}
\mathrm{PE} & =W_{S} \\
& =4,940 \times 0.059 \\
\mathrm{PE} & =291 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

Thus, the total energy to be absorbed by the brake would be,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{T}} & =\mathrm{KE} \mathrm{I}_{\mathrm{I}}+\mathrm{KE}+\mathrm{PE} \\
& =7.71+147.8+291 \\
\mathrm{E}_{\mathrm{T}} & =447 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

The $25 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 8 should be capable of absorbing $447 \mathrm{ft}-\mathrm{lb}$ of energy. The brake's maximum kinetic energy absorption rating should exceed this value.

Motor slip and test loads (150\% of load) should be considered both in sizing and thermal calculations.
Brakes overheated in testing will require inspection before using in the standard application.

Heat dissipation in cyclic applications

In general, a brake will repetitively stop a load at the duty cycle that a standard electric motor can repetitively start the load. A brake's thermal capacity is based upon the heat it can absorb and dissipate while cycling. The thermal capacity ratings for brakes are listed in the specification tables for specific brake models.

The energy that a brake is required to absorb and dissipate by a given power transmission system is determined from the total inertia of the load and system, the rotating or linear speed of the load, and the number of times the load is to be stopped in a given time period. The rate of energy dissipation is expressed in horsepower seconds per minute (hp$\mathrm{sec} / \mathrm{min}$). Other common units for energy rates, such as foot pounds per second (ft$\mathrm{lb} / \mathrm{sec}$), can be converted to $\mathrm{hp}-\mathrm{sec} / \mathrm{min}$ using the conversion factors given in the Technical Data section.
Refer to the Thermal Capacity Chart for use above $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ ambient temperature.
For applications demanding optimum brake performance, such as high inertial loads and frequent stops, the rate of energy dissipation required by the system is determined using the following formulas. The calculated rate of energy dissipation should not exceed the thermal capacity of the brake. Thermal dissipation requirements exceeding the brake's rating
may result in overheating of the brake to a point where torque falls appreciably. The friction material of the brake could glaze, carbonize or fail.
For rotating or linear loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:

$$
\begin{aligned}
T C= & \frac{W \mathrm{~K}_{\mathrm{T}} \times \mathrm{N}_{\mathrm{B}}^{2} \times \mathrm{n}}{3.2 \times 10^{6}} \\
\text { Where, } \mathrm{TC}= & \text { Thermal capacity required } \\
& \text { for rotating or linear loads } \\
& \text { hp-sec/min } \\
\mathrm{W} \mathrm{~K}_{\mathrm{T}}^{2}= & \text { Total system inertia reflected } \\
& \text { to brake, lb- } \mathrm{ft}^{2} \\
\mathrm{~N}_{\mathrm{B}}= & \text { Shaft speed at brake, rpm } \\
\mathrm{n}= & \text { Number of stops per } \\
& \text { minute, not less than } 1 \\
3.2 \times 10^{6}= & \text { Constant }
\end{aligned}
$$

The rotating speed enters the formula as a squared function. Therefore, thermal requirements are of particular significance in systems where the brake will be operated at high speeds.

$$
\begin{aligned}
\text { TC }= & \frac{\mathrm{E}_{\mathrm{T}} \times \mathrm{n}}{550} \\
\text { Where, } \mathrm{TC}= & \text { Thermal capacity required } \\
& \text { for overhauling loads } \\
& \text { hp-sec/min } \\
\mathrm{E}_{\mathrm{T}}= & \text { Total energy brake } \\
& \text { absorbs, tt-lb } \\
n= & \text { Number of stops per } \\
& \text { minute, not less than } 1 \\
550= & \text { Constant }
\end{aligned}
$$

For overhauling loads, the rate at which a brake is required to absorb and dissipate heat when frequently cycled is determined by the relationship:
Example 11 illustrates how the required thermal capacity would be determined for Example 4.
Example 11: Determine the thermal capacity required to stop a rotating load frequently.

Referring back to Example 4, the flywheel will be stopped 20 times per minute. The required thermal capacity of the $6 \mathrm{lb}-\mathrm{ft}$ brake selected in this example is determined as follows.
The total inertial load the brake is to retard is $0.15 \mathrm{lb}-\mathrm{ft}^{2}$. The shaft speed of the brake motor is $1,800 \mathrm{rpm}$. Therefore, the required thermal capacity is,

$$
\begin{aligned}
T C & =\frac{W K_{T}^{2} \times N_{M}^{2} \times n}{3.2 \times 10^{6}} \\
& =\frac{0.15 \times 1,800^{2} \times 20}{3.2 \times 10^{6}} \\
T C & =3.0 \mathrm{hp}-\mathrm{sec} / \mathrm{min}
\end{aligned}
$$

The $6 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 4 should have a thermal capacity rating equal to or greater than $3.0 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$.

A brake with greater thermal capacity will result in greater wear life.
If productivity is to be improved in Example 4 by increasing the cycle rate, the maximum number of stops per minute is determined by the rated thermal capacity of the brake. If the $6 \mathrm{lb}-\mathrm{ft}$ brake selected in Example 4 has rated thermal capacity of $9 \mathrm{hp}-\mathrm{sec} / \mathrm{min}$, the maximum permissible stops per minute would be determined by transposing the above formula to,

$$
\begin{aligned}
\mathrm{n}_{\text {max }} & =\frac{T C_{\text {raled }} \times\left(3.2 \times 10^{6}\right)}{W k_{T}^{2} \times N_{N}^{2}} \\
& =\frac{9 \times\left(3.2 \times 10^{5}\right)}{0.15 \times 1,800^{2}} \\
\mathrm{n}_{\text {max }} & =59 \text { stops } / \mathrm{min}
\end{aligned}
$$

So, the brake could be operated up to 36 times per minute without exceeding its ability to absorb and dissipate the heat generated by the frequent stops and meet the maximum solenoid cycle rating. Cycle rate cannot exceed the solenoid cycle rate appearing in the catalog.

Electrical Considerations

Please see page 118.

Environmental Considerations

Brakes with standard open enclosures when mounted on NEMA C-face motors are drip-proof, except where a manual release lever has a clearance opening in the housing. The standard enclosure is commonly used on open, drip-proof and enclosed motors operating indoors or in protected outdoor environments.
NEMA 4, IP 54 enclosures are available on most brake models and are commonly used for outdoor installations, or where there are moist, abrasive or dusty environments. Standard and severe duty NEMA 4 enclosures are available in some brake series.
Brakes of various styles and materials for above or below deck on ships and dockside installation are available. The materials are usually specified by the ship designers or Navy specification MIL-B-16392C. Brakes are also available to meet MIL-E-17807B for shipboard weapon and cargo elevators. Refer to Marine, Maritime and Navy Catalog pages.

Brakes Listed by Underwriters Laboratories, Inc. and certified by Canadian Standards Association are available for use in hazardous locations, including Class I, Groups C and D; and Class II, Groups E, F and G. Motormounted, hazardous-location electric disc brakes are listed only when mounted to a Listed hazardous-location motor of the same Class and Group at the motor manufacturer's facility, and where the combination has been accepted by UL or CSA. This procedure completes the hazardous duty assembly of the brake. However, foot-mounted hazardous-location disc brakes that are Listed are also available for coupling to a motor, and may be installed by anyone.
Hazardous-location brakes are not gasketed unless indicated in the brake description. The enclosure prevents
flame propagation to the outside atmosphere through controlled clearances. Protection from weather and washdowns must be provided. If the brake is used in a high humidity or low temperature environment, internal electric heaters should be used.
Standard ambient temperature range for brake operation is from $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$. Refer to Thermal Ratings section for brake operation at higher ambient temperatures. Heaters may be available for brake operation at low ambient temperatures and high humidity environments. Ductile iron construction and heaters are recommended for prolonged cold climate use.

Conclusion

The spring-set, electrically released disc brake is an important accessory to electric motors used in cycling and holding operations. It is available in a wide variety of enclosures. In most applications, a brake requires no additional wiring, controls or auxiliary electrical equipment. It is simple to maintain since the replaceable items, the friction discs, can be easily changed.
Many spring-set motor brakes are equipped with features such as simple wear adjustment to provide optimum friction disc life, visual wear indicator, torque adjustment and manual release. Featured on some types of brakes is automatic adjustment to compensate for friction disc wear. This feature eliminates the need for periodic adjustment and is advantageous in remote or inaccessible locations. Not all of the brakes on the market provide all of these features, but there are many Stearns motor brakes offering these features.
Care should be exercised in properly selecting a brake giving due consideration to torque as well as environment and thermal requirements.

On applications where all the pertinent information is not available, selection must be based on previous experience of the designer and user, as well as the brake manufacturer, and should be confirmed by tests under actual operating conditions. If the brake is selected with reasonable allowances made for extremes in operating conditions, it will perform its task with little attention or maintenance.

The following formulas cover the basic calculations used in brake application engineering.

Required	Given	Formula
Full load motor torque ($\mathrm{T}_{\text {flmt }}$), lb-ft	Horsepower (P), hp Shaft speed (N), rpm 5252 = Constant	$\mathrm{T}_{\mathrm{fn} \mathrm{t}}=\frac{5252 \times \mathrm{P}}{\mathrm{~N}}$
Average dynamic braking torque $\left(T_{d}\right), l b-f t$	Total inertia reflected to brake $\left(\mathrm{Wk}^{2}\right)$, lb- $\mathrm{ft}{ }^{2}$ Shaft speed at brake (N), rpm Desired stopping time (t), seconds $308=$ Constant	$\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{W} \mathrm{k}^{2} \times \mathrm{N}}{308 \times \mathrm{t}}$
Static torque (T), lb-ft	Force (F), Ib Pulley or drum radius, (R), ft	$\mathrm{T}=\mathrm{F} \times \mathrm{R}$
Overhauling dynamic torque reflected to brake shaft (T_{o}), lb-ft	Weight of overhauling load (W), Ib Linear velocity of descending load (V), ft/min Shaft speed at brake (N), rpm 0.158 = Constant	$T_{0}=\frac{0.158 \times W \times V}{N}$
Static torque of brake (T_{s}), Ib-ft (General Guideline)	Dynamic braking torque required $\left(\mathrm{T}_{\mathrm{d}}\right)$, lb-ft 0.8 = Constant (derating factor)	$\mathrm{T}_{\mathrm{s}}=\frac{\mathrm{T}_{\mathrm{d}}}{0.8}$
Inertia of rotating load reflected to brake shaft ($\mathrm{w} \mathrm{k}_{\mathrm{b}}^{2}$), lb-ft2	Inertia of rotating load ($\mathrm{Wk}_{\mathrm{L}}^{2}$), lb-ft ${ }^{2}$ Shaft speed at load (N_{L}), rpm Shaft speed at brake $\left(\mathrm{N}_{\mathrm{B}}\right)$, rpm	Equivalent $\mathrm{w} \mathrm{k}_{\mathrm{b}}^{2}=\mathrm{W} \mathrm{k}_{\mathrm{L}}^{2}\left(\frac{\mathrm{~N}_{\mathrm{L}}}{\mathrm{N}_{\mathrm{B}}}\right)^{2}$
Equivalent inertia of linear moving load reflected to brake shaft ($\mathrm{w} \mathrm{k}_{\mathrm{w}}^{2}$), lb-ft²	Weight of linear moving load (W), Ib Linear velocity of load (V), ft/min Shaft speed at brake $\left(\mathrm{N}_{\mathrm{B}}\right)$, rpm 2π : = Constant	Equivalent $W k_{w}^{2}=W\left(\frac{V}{2 \pi N_{B}}\right)^{2}$
Kinetic energy of rotating load, (KE_{r}), ft-lb	Inertia of rotating load reflected to brake shaft ($\mathrm{w} \mathrm{k}_{\mathrm{b}}^{2}$), lb-ft2 Shaft speed at brake (N_{B}), rpm 5875 = Constant	$\mathrm{KE}_{\mathrm{r}}=\frac{\mathrm{W} \mathrm{k}_{\mathrm{b}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2}}{5875}$
Kinetic energy of linear moving load (KE_{I}), ft-lb	Weight of load (W), lb Linear velocity of load (v), ft/sec $\mathrm{g}=$ Gravitational acceleration constant, $32.2 \mathrm{ft} / \mathrm{sec}^{2}$	$K E_{\mathrm{I}}=\frac{\mathrm{W} \mathrm{v}^{2}}{2 \mathrm{~g}}$
Change in potential energy (PE), ft-lb	Weight of overhauling load (W), Ib Distance load travels (s), ft	$\mathrm{PE}=\mathrm{Ws}$
Total energy absorbed by brake (E_{T}), ft-lb	Total linear kinetic energy, $\left(\mathrm{KE}_{\mathrm{L}}\right)$, ft-lb Total rotary kinetic energy $\left(\mathrm{KE}_{\mathrm{R}}\right)$, ft-lb Potential energy converted to kinetic energy (PE), ft-lb	$E_{T}=K E_{L}+K E_{R}+P E$
Thermal capacity required for rotational or linear moving loads (TC), hp-sec/min	Total system inertia reflected to brake shaft ($\mathrm{Wk}_{\mathrm{T}}^{2}$), lb-ft ${ }^{2}$ Shaft speed at brake (N_{B}), rpm Number of stops per minute (n), not less than one $3.2 \times 10^{6}=$ Constant	$\mathrm{TC}=\frac{\mathrm{W} \mathrm{k}_{\mathrm{T}}^{2} \times \mathrm{N}_{\mathrm{B}}^{2} \times \mathrm{n}}{32 \times 10^{6}}$
Thermal capacity required for overhauling loads (TC), hp-sec/min	Total energy brake absorbs (E_{T}), ft-lb Number of stops per minute (n), not less than one $550=$ Constant	$T C=\frac{E_{T} \times n}{550}$
Linear velocity, ft/min	$\begin{aligned} & \mathrm{N}=\mathrm{rpm} \\ & \text { Diameter (D), ft } \end{aligned}$	$\mathrm{V}=\mathrm{N} \pi \mathrm{D}$

District Sales Offices

CINCINNATI DISTRICT

Bill Pappas
3143 N. Farmcrest Drive
Cincinnati, OH 45213
Telephone: (513) 631-0639
Fax: (513) 631-1195
bill.pappas@rexnord.com

FLORIDA DISTRICT

Taylor Industrial Sales
6362 East Hanna Avenue
Tampa, FL 33610
Telephone: (813) 663-9111
Fax: (813) 663-9104
bill@tiscotampa.com

INTERMOUNTAIN DISTRICT

MJM Sales
809 1st Street
Berthoud, CO 80513
Telephone: (970) 532-3559
Fax: (970) 532-0122
mjmsales@questoffice.net

LOS ANGELES DISTRICT

Foxco Equipment Sales, Inc.
7071 Warner Avenue - Suite F751
P.O. Box 2148

Huntington Beach, CA 92647-2148
Telephone: (714) 596-3600
Fax: (800) 428-9857
foxcoinfo@foxcoequipment.com
MICHIGAN DISTRICT
Ganco Industrial, Inc.
2960 S. Wilson Court NW - Suite B
Grand Rapids, MI 49544
Telephone: (616) 249-8430
Fax: (616) 249-8628
gnorris@gancoindustrial.com

MID-ATLANTIC DISTRICT

N.O. Holder \& Associates, Inc.

4109 East North Street, Suite 400 (29615)
P.O. Box 25603

Greenville, SC 29616
Telephone: (864) 244-8854
Fax: (864) 244-2355
neall@noholder.com
N.O. Holder \& Associates, Inc. 6808 S. Old Carriage Road
Rocky Mount, NC 27803
Telephone: (252) 266-3552
Fax: (252) 451-9100
keith@noholder.com

NEW ENGLAND DISTRICT

Please Contact Factory 5150 S. International Drive P.O. Box 100640

Cudahy, WI 53110-6111
Telephone: (414) 277-4368
Fax: (414) 277-4364
raymond.mazurek@rexnord.com

NEW YORK DISTRICT

Please Contact Factory
5150 S. International Drive
P.O. Box 100640

Cudahy, WI 53110-6111
Telephone: (414) 277-4368
Fax: (414) 277-4364
raymond.mazurek@rexnord.com

PHILADELPHIA DISTRICT

Brisbane Industrial Drives Company, Inc.
1432 State Route 903
Jim Thorpe, PA 18229
Telephone: (570) 325-3684
Fax: (570) 325-3870
dchrisb@brisbaneindustrial.com
ST. LOUIS DISTRICT
Scott Peterson
345 Laduemont Drive
St. Louis, MO 63141
Telephone: (314) 453-1600
Fax: (314) 453-1601
scott.peterson@rexnord.com
SOUTHEAST DISTRICT
Power \& Motion Industrial
3440 Blue Springs Road-Suite 103
Kennesaw, GA 30144
Telephone: (770) 578-0389
Fax: (770) 529-0768
ed@powerandmotion.com

Thomtec Industrial Sales Company
4205 Hillsboro Road, Suite 218 (UPS only)
P.O. Box 159042

Nashville, TN 37215
Telephone: (615) 269-4050
Fax: (615) 296-0423
thomtecind@aol.com
TEXAS DISTRICT
Conveying \& Power Transmission Solutions
1199 E. Main Street
P.O. Box 146

Itasca, TX 76055
Telephone: (800) 383-5918
Fax
(254) 687-2205
sales@c-pts.com
Conveying \& Power Transmission Solutions
1033 N. Hwy. 77
Schulenberg, TX 78956
Telephone: (979) 561-6907
Fax: (979) 743-3208
shollas@c-pts.com

WISCONSIN DISTRICT

Randy Sprink
5150 S. International Drive
P.O. Box 100640

Cudahy, WI 53110-6111
Telephone: (414) 277-4368
Fax: (414) 277-4364
randall.sprink@rexnord.com

International

AUSTRALIA:

Rexnord Australia Pty. Ltd.
25 Henry Street
P.O. Box 620

Picton, New South Wales 2571
Australia
Telephone: 61-2-4677-3811
Fax: 61-2-4677-3812

BRAZIL:

Rexnord Correntes Ltda.
Rua Alferes Magalhaes, $92-\mathrm{Cj} .96$
02034-006 - Sau Paulo - SP
Brazil
Telephone: 55-11-6221-2283
Fax: 55-11-6221-6745

EUROPE:

Rexnord Belgium NV/SA
Dellingstraat 55
B-2800 Mechelen
Belgium
Telephone: 32-15-443811
Fax: 32-15-443860

LATIN AMERICA (Miami):

Rexnord International Inc.
7200 NW 19th Street
Suite 202
Miami, FL 33126, USA
Telephone: 305/592-4367
Fax: 305/592-5384

SINGAPORE:

Rexnord International Inc.
36 Purvis Street
Talib Center \#02-01
Singapore 188613
Telephone: 65-6338-5622
Fax: 65-6338-5422

Canada

ALBERTA:
9783-45 Avenue
Edmonton, Alberta
T6E 5V8
Telephone: 708/463-9444
Fax: 780/450-4973
BRITISH COLUMBIA:
201-2497 Clearbrook Road
Abbotsford, British Columbia
V2T 2 Y 3
Telephone: 604/852-9545
Fax: 604/852-9693

ONTARIO:

81 Maybrook Drive
Scarborough, Ontario
M1V $3 Z 2$
Telephone: 416/297-6868
Fax: 416/297-6873
QUEBEC:
6039 Thimens Boul.
Ville St-Laurent, Quebec
H4S 1V8
Telephone: 514/337-2446
Fax: $\quad 514 / 337-2615$

Stearns Brand -

Time Tested and Trusted for Over 90 Years

Since 1916, Stearns has been totally focused on the needs of our customers, setting the standard for brake and clutch quality, on-time delivery performance and a commitment to innovative service.

1916 Founded by R. H. Stearns
1928 Invented the DC Clutch and Brake
1935 Originated the AC Motor Brake
1953 Introduced the first UL approved Brake for Hazardous Locations
1973 Introduced the first effective self-adjust mechanism for industrial spring-set brakes
1986 Introduced SINPAC Centrifugal Switches
1995 Introduced Stearns Patented Splined Hub for longer friction disc life \& maximum heat dissipation
2007 Introduced MSHA approved brake for the mining industry
R. H. Stearns - Founder

As the largest supplier of spring-set, electrically released brakes in North America, Stearns $\boxed{\square}$ erisys Registrars commitment to quality, service, innovation and reliability continue to be the driving force behind our business.

As an ISO 9001-2000 Certified company, internal Six Sigma, Lean Manufacturing and Demand Flow programs continue to support our goal of quality products.

To assure consistant quality and reliability we have incorporated a fully integrated operation within our 100,000 square foot facility, including:
~ Research \& Development Lab
~ CNC / DNC Machine Shop
~ Complete Assembly Capability
~ Specialty Mechanical Manufacturing
~ Electronics Manufacturing

Committed to 100\% RoHS Compliance

We are committed to providing environmentally responsible products. Specifically, we have a program in place to eliminate banned materials covered in the RoHS Directive for all our products.

To date, our fully compliant product lines include:
~ All AAB Series Products
~ All SAB Series Products
~ All SINPAC Solid-State Switches
~ All Super-Mod Electrically Applied Clutch/Brake Modules

Numerous other products can be supplied RoHS compliant upon specific
 request.

Stearns has earned the reputation as the industry's leader in delivery, quality and customer service by working directly with our customers.

With a factory trained sales force, knowledgeable customer service, world-wide distribution and complete EDI capabilities, Stearns can respond to your needs.

Stearns commitment to total customer service reaches out to your facility as well. Our field service technicians will work with your maintenance staff and plant engineers.

Stearns is fully insured and our Field Service support capabilities include:
~ Application Assistance
~ Application Engineering Support
~ Upgrade Reconfigurations
~ Troubleshooting
~ Travel for on-site technical services
~ Field training programs for your maintenance staff and sales force, on all of Stearns products.

Notes:

[^0]: * 56,000-80 Series includes a

 C-face gasket only, no hub seal.
 ** Subtract $\$ 30.00$ for brake
 ordered less hub.

[^1]: * Subtract $\$ 30.00$ for brake ordered less hub.

[^2]: * Subtract $\$ 30.00$ for brake ordered less hub.

[^3]: * Subtract $\$ 45.00$ for brake ordered less hub.
 ** Foot mounting adds $7 \mathrm{lbs} .(3.2 \mathrm{~kg})$ to weight.
 ${ }^{1}$ These model numbers and list prices include non-standard friction discs. For high inertia or overhauling loads, it is recommended that 81,000 or 82,000 series brakes be used, as these brakes have substantially higher thermal capacities (50% higher for 81,000 series and 150% higher for 82,000 series).

[^4]: (1) New! 9th digit indicates aluminum or cast iron housing 2 = Cast Iron
 3 = Aluminum: Add .38 " to " A " dimension
 (2) Subtract $\$ 230.00$ for brake ordered less hub.
 (3) Subtract 21 lbs . for aluminum housing. Foot mounting adds $40 \mathrm{lbs}(18.2 \mathrm{~kg})$ to weight.

[^5]: (1) $\mathrm{X}=0$ or 1.0 designates a 16 in. "AK", 14 in "AJ". 1 designates 16.5 in. "AK", 14.5 in. "AJ".
 (2) Subtract $\$ 530.00$ for brake ordered less hub.
 (3) Foot mounting adds 75 lbs . $(34 \mathrm{~kg})$ to weight

[^6]: For adapter dimensions, see Technical Data.

[^7]: * X in 9th digit designates hub bore and shaft size.

[^8]: * X in 9 th digit designates hub bore and shaft size.

[^9]: *See "Ordering Information", previous page.

[^10]: * Exceeds maximum speed rating.

[^11]: NOTE: Non-standard bore sizes available, contact factory. Add $\$ 60.00$ for non-standard bore size.

[^12]: *Size 2.8 can be pressure plate mounted using the long hub. The F` dimension shown for size 2.8 is for pressure plate mount using the long hub.

[^13]: *Also the location for the external lead (on the backside of magnet body) for Series 322 only.

[^14]: ${ }^{*}$ Kebco is a Registered Trademark of Kebco, Inc. or its affiliates. Lenze is a Registered Trademark of Lenze Power Transmission or its affiliates. Binder is a Registered Trademark of Kendrion or its affiliates.

[^15]: *For NEMA 48C and 56C mounting, see pages 77-78, Series 321/322 NEMA C.

[^16]: *Key to DIN 6885/3p9-Standard Metric Keyway DIN 6885/1p9
 $D 1^{* *} \& A^{* *}$ for Aluminum Cover
 D1*** \& A** for Ductile Iron Cover

[^17]: *Standard U.S. keyseats made to ANSI B17.1 standard.

[^18]: $\mathbf{C}_{\mathbf{S}}$ - Start capacitor, \mathbf{M} - Motor main winding, $\mathbf{C}_{\mathbf{R}}$ - Run capacitor, $\mathbf{S T}$ - Motor start winding

[^19]: \mathbf{C} s- Start capacitor, \mathbf{M} - Motor main winding, ST - Motor start winding, F - Forward, R - Reverse

